Parallel Programming for High-Performance Applications
22 October 2015
Department of Computer Science, Faculty of Sciences

The exam has 8 questions. Your answers should be to the point: address the
questions and omit information that is not asked for. The grading system
is shown after the last question.

1. The parallel algorithms for both SOR (Successive overrelaxation ) and
ASP (All-pairs shortest paths ) perform well only for large input prob-
lems; in particular, if the algorithms use NxN matrices on P processors,
then N should be much bigger than P to obtain good performance.

(a)
(b)

()

Explain why N needs to be much larger than P by analyzing the
communication behavior of the 2 algorithms

What is the impact of the communication network on the per-
formance of these algorithms? Which network properties are im-
portant for SOR resp. ASP?

Why does the parallel TSP (Traveling Salesman Problem) algo-
rithm not need a large input problem (number of cities) to obtain
good performance?

Describe two similarities and one key difference between NUMA
multiprocessors and Distributed Shared Memory.

Describe what the relation is between the diameter of a communi-
cation network and the latency of messages that are sent over the
network. How did this relation change when networks changed
from packet-switched message routing to circuit-switched mes-
sage routing?

What is a Remote Procedure Call in the SR language? Give an
example where it is easier to use than normal message passing.

The Ibis programming system uses connections (with send-ports
and receive-ports) for communication. What are the advantages
of this approach?

What are the most important advantages of HPF (High Perfor-
mance Fortran) over message-passing systems?



4. An MPI program needs to send a large message (hundreds of megabytes)
from one machine to another, where the exact size depends on runtime
conditions. What SEND and RECEIVE primitives from MPI would
you use to make the transfer efficient and avoid unnecessary copying?
Give some code fragment for the sending and receiving processes. The
syntax does not matter, but do make clear which exact SEND and
RECEIVE primitives (e.g., communication modes) you use.

5. Someone wants to run the IDA* search algorithm with transposition
tables on a wide-area system, consisting of six (identical) clusters at
different locations connected by high-bandwidth (10 Gb/s) wide-area
links.

(a) How much would the performance of the original Work Stealing
algorithm with partitioned transposition tables be affected, com-
pared to running the algorithm on a single cluster? Explain your
answer.

(b) How much would the Transposition-Driven Scheduling (TDS) al-
gorithm be affected? Explain your answer.

6. Please give short answers to the following questions:

(a) What is thread divergence for a GPU and what is its impact on
performance? Give an example (in pseudocode or C) of code that
exhibits divergence.

(b) What is global synchronization (for a GPU)? How can it be
achieved?

7. Assume the following code, which transposes a matrix:

for (i=0; i<N; i++)
for (j=0; j<N; j++)
B[j1[i] = A[i][j];

The A and B matrices contain integer numbers, with 1 int = 4 Bytes.

Answer the following questions:

(a) What is the arithmetic intensity of the kernel? Can the arithmetic
intensity of the kernel be improved?



(b) This kernel runs on an architecture with 1 TFLOP theoretical
peak, and 200GB/s memory bandwidth. What is the expected
performance (execution time) for N=100007

8. Take the following application:

__kernel Kernell(int N, int *arrayl, int *array2) {
int myID = ...; //myThreadID
if (myID < N)
array2[myID] = process(arrayl[myID]);

Init;
Kernell (N, arrayl, array2); //requires 2GB memory, 1GB per array
WriteResults;

Assume process is an arithmetic expression that is evaluated only us-
ing its own input data (i.e., the application is embarrassingly parallel).
The execution time of the kernel on the CPU is T'¢(N) and on any GPU
is Tg(N) for the full array; the data transfer time is Td(N). All execu-
tion and transfer times are proportional with the size of the array (i.e.,
Tg(2N) =2*Tg(N)). Assume that Te(N) >> (T'g(N) + Td(N)).

(a) Assume a system with a GPU with 1GB of memory, while the
arrays are 1GB each. How would you use this system for accel-
erating this application? What would be the performance gain?

(b) Assume the kernel needs to process arrays that are 100 times
bigger. Give examples of three types of architectures that you
would use. What would be the performance expectation there?

Points

Total: 90 (4+ 10 = 100)



