Exam Optimization of Business Processes 24 May 2016 This exam consists of 4 problems, each consisting of several questions. All answers should be motivated, including calculations, formulas used, etc. It is allowed to use 1 sheet of paper (or 2 sheets written on one side) with **hand-written** notes. The minimal note is 1. All questions give the same number of points. The use of a calculator and a dictionary are allowed. A table with the normal distribution is attached. - 1. A production process consists of two steps. The processing times for each step are independent and uniform distributed on [0,1]. Orders arrive according to a Poisson process with rate 1. - a. The first configuration allows for an infinite buffer between the processing steps. Is the flow between station 1 and 2 Poisson? Motivate your answer. - b. Give a reasonable approximation of the total expected time between order arrival and order completion. Now the process is changed as follows. Both steps are done in parallel. A new order is taken into production when both steps of the previous order are done. - c. Compute the first and second moment of the time it takes to process one order. (Hint: compute first the distribution function of this time.) - d. Compute the expected time between order arrival and order completion. - 2. A project consists of 6 activities, numbered 1, ..., 6. Their respective durations are 2, - 2, 3, 1, 4, and 2. Activity 1 needs to be done before 2 and 5 start, 2 before 3 and 6 start, 4 before 5 starts, 5 before 6 starts. - a. Determine the earliest finish time and latest start time of each activity. - b. Assume durations are random with expectation as given and each with standard deviation of 1. Use a normal approximation of the duration of the critical path to estimate the probability that the project takes longer than 9 time units. A table with the normal distribution is attached. (Hint: $\sqrt{3} \approx 1.73$.) - c. Give two reasons why reality might deviate considerably from this approximation. - 3a. Formulate the call center shift scheduling problem that requires the service level to be attained in every interval. - 3b. Give two reasons why this leads to overstaffing. - 3c. To avoid overstaffing the constraint on each interval is replaced by a second component of the objective that counts the total difference over all intervals between required staffing and planned staffing. Formulate the new problem as an integer linear program. - 3d. At the beginning of the day there is a certain number of emails that needs to be done before the end of the day. Add this constraint to the formulation. - 4. A hotel receives individual guests and couples. Single travelers pays 100 Euros, couples 120. There are 20 rooms, each room is suitable for both types of bookings. Consider the bookings for a single night. Assume that demand is discretized such that there is at most 1 booking per period. - a. Formulate the dynamic programming equation that maximizes the expected revenue. - b. Do 4 iterations with 2 room and booking probability 0.4 for each type (thus with probability 0.4 single traveler, 0.4 couple, 0.2 no demand). Now there are single-bed rooms and double-bed rooms. Single travelers can use a 2-person room but not vice versa. - c. Formulate an appropriate state space for this problem. - d. Write down the dynamic programming equations. Think about all boundary cases (t = 0, no 1-person rooms left, etc.). ## Table with values of $\mathbb{P}(0 < X < x + y)$ with X a random variable with a standard normal distribution | | values of y | | | | | | | | | | |---------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | values of x | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | | 0 | 0.000 | 0.004 | 0.008 | 0.012 | 0.016 | 0.020 | 0.024 | 0.028 | 0.032 | 0.036 | | 0.1 | 0.040 | 0.044 | 0.048 | 0.052 | 0.056 | 0.060 | 0.064 | 0.067 | 0.071 | 0.075 | | 0.2 | 0.079 | 0.083 | 0.087 | 0.091 | 0.095 | 0.099 | 0.103 | 0.106 | 0.110 | 0.114 | | 0.3 | 0.118 | 0.122 | 0.126 | 0.129 | 0.133 | 0.137 | 0.141 | 0.144 | 0.148 | 0.152 | | 0.4 | 0.155 | 0.159 | 0.163 | 0.166 | 0.170 | 0.174 | 0.177 | 0.181 | 0.184 | 0.188 | | 0.5 | 0.191 | 0.195 | 0.198 | 0.202 | 0.205 | 0.209 | 0.212 | 0.216 | 0.219 | 0.222 | | 0.6 | 0.226 | 0.229 | 0.232 | 0.236 | 0.239 | 0.242 | 0.245 | 0.249 | 0.252 | 0.255 | | 0.7 | 0.258 | 0.261 | 0.264 | 0.267 | 0.270 | 0.273 | 0.276 | 0.279 | 0.282 | 0.285 | | 0.8 | 0.288 | 0.291 | 0.294 | 0.297 | 0.300 | 0.302 | 0.305 | 0.308 | 0.311 | 0.313 | | 0.9 | 0.316 | 0.319 | 0.321 | 0.324 | 0.326 | 0.329 | 0.331 | 0.334 | 0.336 | 0.339 | | 1 | 0.341 | 0.344 | 0.346 | 0.348 | 0.351 | 0.353 | 0.355 | 0.358 | 0.360 | 0.362 | | 1.1 | 0.364 | 0.367 | 0.369 | 0.371 | 0.373 | 0.375 | 0.377 | 0.379 | 0.381 | 0.383 | | 1.2 | 0.385 | 0.387 | 0.389 | 0.391 | 0.393 | 0.394 | 0.396 | 0.398 | 0.400 | 0.401 | | 1.3 | 0.403 | 0.405 | 0.407 | 0.408 | 0.410 | 0.411 | 0.413 | 0.415 | 0.416 | 0.418 | | 1.4 | 0.419 | 0.421 | 0.422 | 0.424 | 0.425 | 0.426 | 0.428 | 0.429 | 0.431 | 0.432 | | 1.5 | 0.433 | 0.434 | 0.436 | 0.437 | 0.438 | 0.439 | 0.441 | 0.442 | 0.443 | 0.444 | | 1.6 | 0.445 | 0.446 | 0.447 | 0.448 | 0.449 | 0.451 | 0.452 | 0.453 | 0.454 | 0.454 | | 1.7 | 0.455 | 0.456 | 0.457 | 0.458 | 0.459 | 0.460 | 0.461 | 0.462 | 0.462 | 0.463 | | 1.8 | 0.464 | 0.465 | 0.466 | 0.466 | 0.467 | 0.468 | 0.469 | 0.469 | 0.470 | 0.471 | | 1.9 | 0.471 | 0.472 | 0.473 | 0.473 | 0.474 | 0.474 | 0.475 | 0.476 | 0.476 | 0.477 | | 2 | 0.477 | 0.478 | 0.478 | 0.479 | 0.479 | 0.480 | 0.480 | 0.481 | 0.481 | 0.482 | | 2.1 | 0.482 | 0.483 | 0.483 | 0.483 | 0.484 | 0.484 | 0.485 | 0.485 | 0.485 | 0.486 | | 2.2 | 0.486 | 0.486 | 0.487 | 0.487 | 0.487 | 0.488 | 0.488 | 0.488 | 0.489 | 0.489 | | 2.3 | 0.489 | 0.490 | 0.490 | 0.490 | 0.490 | 0.491 | 0.491 | 0.491 | 0.491 | 0.492 | | 2.4 | 0.492 | 0.492 | 0.492 | 0.492 | 0.493 | 0.493 | 0.493 | 0.493 | 0.493 | 0.494 | | 2.5 | 0.494 | 0.494 | 0.494 | 0.494 | 0.494 | 0.495 | 0.495 | 0.495 | 0.495 | 0.495 | | 2.6 | 0.495 | 0.495 | 0.496 | 0.496 | 0.496 | 0.496 | 0.496 | 0.496 | 0.496 | 0.496 | | 2.7 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | 0.497 | | 2.8 | 0.497 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | | 2.9 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498 | 0.499 | 0.499 | 0.499 | | 3 | 0.499 | 0.499 | 0.499 | 0.499 | 0.499 | 0.499 | 0.499 | 0.499 | 0.499 | 0.499 |