Exam Optimization of Business Processes 28 August 2006

This exam consists of 4 problems, each consisting of several questions.

All answers should be motivated, including calculations, formulas used, etc.

It is allowed to use 1 sheet of paper (or 2 sheets written on one side) with **hand-written** notes.

The minimal note is 1. Questions 1 and 4 each give 2 points when correctly answered, questions 2 and 3 can give 2.5 points.

The use of a calculator and a dictionary are allowed. A table with Poisson distributions is added.

- 1. In a hospital there are two types of patients with separate wards, both with Poisson arrival processes. Patients are admitted when there is a bed available, otherwise they are transferred to another hospital. The transfer percentage is 5% for type 1 and 40% for type 2.
- a. What will happen to the transfer percentages if the two wards are merged and the same admission rule is used?
- b. Describe an admission rule under which both transfer percentages decrease.
- c. Describe a mathematical model by which we can estimate the transfer percentages under this admission rule.
- 2. Consider a machine with two types of jobs. Type 1 has exponential service times with rate 2, type 2 has exponential service times with rate 3. Arrivals are according to independent Poisson processes.
- a. Give the expected waiting times for both classes in the case of production in FIFO order.
- b. Give the expected waiting times for both classes in the case of strict non-preemptive priority to class 1 and of non-preemptive priority to class 2. Explain the differences found.

- 3. A contact center has inbound calls and emails. Shifts are defined by 0-1 vectors. There are K different types of shifts, and shift k costs c_k . At interval i s_i agents are needed for inbound calls. During interval i u_i agents are required for dealing with the emails.
- a. Formulate a mathematical programming model for shift scheduling during one day that minimizes costs and schedules enough agents (i.e., at least $s_i + u_i$ during interval i).

Now the emails from interval i need not necessarily be handled during interval i, but in one of the intervals $i, \ldots, i + t - 1$ for some fixed t > 1.

- b. Formulate a mathematical programming model for shift scheduling during one day that minimizes costs and schedules enough agents.
- c. Give a simple numerical example in which the answer under b is cheaper than the one under a.

4. Consider an inventory model with Poisson(5) demand, lead time 1, K = 40, h = 1, and maximal 5% backorders. Estimate Q^* and r^* .