Exam Optimization of Business Processes 29 May 2006

This exam consists of 4 problems, each consisting of several questions.

All answers should be motivated, including calculations, formulas used, etc.

It is allowed to use 1 sheet of paper (or 2 sheets written on one side) with **hand-written** notes.

The minimal note is 1. Questions 1 and 2 each give 2 points when correctly answered, questions 3 and 4 can give 2.5 points.

The use of a calculator and a dictionary are allowed.

- 1. Consider a machine with two types of jobs. Type 1 has exponential service times, type 2 has deterministic service times, with the same expectation. Arrivals are according to independent Poisson processes.
- a. Give the expected waiting times for both classes in the case of production in FIFO order.
- b. Give the expected waiting times for both classes in the case of strict non-preemptive priority to class 1.

- 2. Consider a call center with two different types of calls.
- a. Give two advantages of having cross-trained agents.
- b. Give two different ways to assign calls to cross-trained agents, and give their respective advantages and disadvantages.
- c. Which way to assign would you prefer in a big call center? Motivate your answer.

- 3. A call center has a single skill and shifts defined by 0-1 vectors. There are K different types of shifts, and shift k costs c_k .
- a. Formulate a mathematical programming model for shift scheduling during one day that obeys a service level constraint for each interval.

Now overwork is possible. A second 0-1 vector for each shift gives the intervals in which overwork is possible, with costs d_k for shift k.

b. Formulate a mathematical programming model for shift scheduling during one day that obeys a service level constraint for each interval in which the possibility of overwork is incorporated.

Finally, we consider a single overall SL constraint instead of one for the whole day.

c. Formulate a mathematical programming model for shift scheduling during one day that obeys an overall service level constraint in which the possibility of overwork is incorporated.

- 4. A system consists of 2 parallel 2-out-of-3 systems.
- a. Give the expected time until the system is down if the lifetimes are i.i.d. and exponentially distributed.
- b. Give all minimal path sets.
- c. Give the system function in terms of the availability probabilities of the components and simplify this expression as much as possible.
- d. Give an expression for the availability at t for i.i.d. and exponentially distributed lifetimes.