
Optimization and Multiagent Systems

Exam
Provide formal arguments for your claims. Be concise. If the space in the boxes is not

su�cient, use additional sheets and clearly indicate which questions your answers

belong to.

Question 1 (4 + 12 points)
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v

c1(x) = 1 c2(x) = x

c3(x) = x c4(x) = 1

c5(x) = x2 + 1

Figure 1: Network for Question 1

For a non-atomic sel�sh routing game, consider the road network depicted in Figure 1 with a single
commodity (type of player) with tra�c rate 1, origin s and destination t. Before building a new direct
road e5 from s to t with cost function c5(x) = x2+1, agents could only travel either via node u (taking
edges e1 = (s, u) and e2 = (u, t) with costs c1(x) = 1 and c2(x) = x) or via node v (taking edges
e3 = (s, v) and e4 = (v, t) with costs c3(x) = x and c4(x) = 1). For the following questions, the social
cost is the standard utilitarian cost

∑
e∈E ce(x) · x.

a) Did adding the new road e5 increase or decrease the social cost in the network in equilibrium?
Give an argument for your answer.

b) Calculate the price of anarchy in the network after the introduction of the new road e5.
Hint: In order to make calculations easier, you can re-design this network as an equivalent
Pigou-like network with two edges and two nodes s, t and argue about the �ow in that network.

Solution:

a) The total social cost went down. Before the addition, agents split equally between the two paths
s − u − t and s − v − t for a travel time of 3

2 each. After construction, agents move equally to
the new edge until the costs on all paths is 5

4 (which happens when half of the �ow goes over the
middle edge and 1

4 over the other edges). Since the cost on the paths s−u− t and s− v− t goes
down and all paths have the same cost in equilibrium, the total social cost went down.

b) Figure 2 shows the Pigou-like network with two edges.
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� We already determined the Nash �ow in the previous exercise. We can demonstrate it again
for the two-edge network: The Nash equilibrium �ow is given for x2 + 1 = 1

2 (1 − x) + 1

which holds for x1,2 = −1±
√
1+8

4 and hence x = 1
2 . Each path has a cost of 1.25 and hence

the social cost of the �ow is 1.25.

� For the social optimum, we can derive the Nash equilibrium �ow in the network with the

marginal cost functions. This leads to 3x2+1 = (1−x)+1, which holds for x1,2 = −1±
√
1+12

6

and hence x =
√
13−1
6 . The social cost in the original network is then(

(

√
13− 1

6
)2 + 1

)
·
√
13− 1

6
+

(
7−

√
13

12
+ 1

)
· 7−

√
13

6
≈ 1.242

� The price of anarchy therefore is 1.0065.

s t

c(x) = x2 + 1

c(x) = 1
2x+ 1

Figure 2: Network for Question 1

Question 2 (10 points)

Give an ordinal potential function for the following 2 player bimatrix game where both the row and
the column player have three actions A, B and C.

A B C

A 80, 10 5, 5 10, 8

B 41, 12 13, 24 8, 6

C 20, 5 2, 20 9, 15

Solution: An example of an ordinal potential

A B C

A 10 70 55

B 90 0 110

C 110 75 90

Question 3 (10 points)

Prove that the price of anarchy for the scheduling game P2(LPT )|uj = −Cj |Cmax (i.e., the sequencing
model on m = 2 machines with local policy that jobs are sequenced non-increasing in their processing
times on each machine) is at least 7

6 .
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Solution: We give an example to show the lower bound. Consider 5 jobs as follows: Jobs 1, 2 have
processing time 3 and jobs 3, 4, 5 have processing time 2.

� Optimum solution: Jobs 1,2 are scheduled on machine 1 and jobs 3,4,5 are scheduled on machine
2. The makespan is 6.

� Nash equilibrium: Jobs 1,3,4 are scheduled on machine 1 and jobs 2,5 are scheduled on machine
2. The makespan is 7.

Question 4 (8+4+10 points)

Consider the following Bayesian game with players Alice and Bob. Both players can play the actions
C and D. Alice is of a �xed type θA, but Bob can be either balanced with probability p or unbalanced

with probability 1 − p. In the following bimatrix representation of the utility, Alice is the row player
and Bob is the column player. In the case that Bob is balanced, the utilities are as follows:

C D
C 2,2 0,0
D 0,0 1,1

In the case that Bob is unbalanced, the utilities are as follows:

C D
C 2,2 0,3
D 0,0 1,1

For all the following questions, state the strategies and provide a proof that they are indeed equi-
librium strategies.

a) Suppose that p < 1
3 . What is the only ex-ante Bayes-Nash equilibrium in this game? Hint:

Start by reasoning what Bob will do when he is unbalanced.

b) Suppose that p = 1
3 . Give a pure-strategy ex-ante Bayes-Nash equilibrium that is di�erent from

the one in the previous answer.

c) Let p > 1
3 . Find a mixed-strategy ex-ante Bayes-Nash equilibrium.

Solution:

a) If Bob is unbalanced, he will always play D since this is his dominant strategy. Let p be the
probability that Bob is balanced and 1− p be the probability that Bob is unbalanced. Let a be
the probability that Bob plays C when he is balanced and 1−a be the probability that Bob plays
D when he is balanced. For Alice, her expected utility for playing C is 2ap, and her expected
utility for playing D is (1− a)p+ (1− p) = 1− ap. If p < 1

3 then the expected utility for playing
C is less than 2

3a ≤ 2
3 while for D it is more than 1 − 1

3a ≥ 2
3 . Therefore, Alice maximizes

her utility by playing D, regardless of a. If Alice always plays D, then Bob also should play D
when he is balanced since that is his best response to Alice playing D. Therefore, the unique
Bayes-Nash equilibrium is reached by Alice playing D and Bob playing D no matter his type.

3



b) With the previous analysis, if Bob plays C with probability a = 1 when balanced, then Alice is
indi�erent between playing C and D since her expected utility for playing C is 2ap = 2

3 and for
playing D is 1− ap = 2

3 . Therefore, a pure-strategy Bayes Nash equilibrium is reached for Alice
always playing C and Bob playing C when he is balanced and D when he is unbalanced.

c) In order for Alice to play a mixed strategy, Bob needs to play C with a probability a such that
Alice is indi�erent between playing C and D. Therefore, 2ap = 1 − ap has to hold, or a = 1

3p .
Similarly, Alice needs to play C with probability q such that Bob is indi�erent between playing
C and D in the case that he is balanced (he will still always play D when he is unbalanced).
Therefore, it needs to hold that 2q = 1− q or q = 1

3 . Therefore, if Alice plays C with probability
1
3 , Bob is indi�erent between playing C and D when he is unbalanced. The mixed-strategy Bayes
Nash equilibrium for p > 1

3 can therefore be described as follows: Alice plays C with probability
1
3 and D with probability 2

3 . If Bob is balanced, he plays C with probability 1
3p and D with

probability 3p−1
3p . If Bob is unbalanced, he plays D.

Question 5 (12 + 4 points)

a) Consider a �rst-price auction with two risk-a�ne bidders i = 1, 2. A winning bidder i has utility
function ui = (vi−bi)

2 where bi is the price that bidder i needs to pay (also its bid). Values v1, v2
are drawn independently from the uniform distribution over [0, 1]. Show that bidding ( 13v1,

1
3v2)

constitutes a Bayes-Nash equilibrium in this auction.

b) Assume that only bidder 1 has this risk-a�ne utility function while bidder 2 has a risk-neutral
utility function u2 = (v2 − b2). Explain whether and how the equilibrium strategies of bidders 1
and 2 would change in the �rst-price auction as compared to the case where both bidders have
identical (either both risk-a�ne or both risk-neutral) utility function.

Solution:

a) We will show that ( 13v1,
1
3v2) constitutes a Bayes Nash equilibrium strategy pro�le. We prove

this by �xing the strategy of bidder 2 to 1
3v2 and show the best response strategy s1 of bidder 1.

Since the value of v2 is drawn from a uniform distribution, the expected utility u1 of bidder 1 is

E[u1] =

∫ 1

0

u1dv2

=

∫ 3s1

0

(v1 − s1)
2dv2

= 3 · (v1 − s1)
2 · s1

Take the derivative for s1 and set to 0.
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−6(v1 − s1)s1 + 3(v1 − s1)
2 = 0

3s21 − 4v1s1 + v21 = 0

s1 =
4± 2

6
v1

The second derivative is 6s1 − 4v1 and hence negative for s1 = 1
3v1, but positive for s1 = v1.

Therefore s1 = 1
3v1 is a maximum for the function and the agent maximizes its utility by bidding

s1 = 1
3v1. Due to symmetry this also holds for the second bidder and ( 13v1,

1
3v2) is a Bayes-Nash

equilibrium.

b) The strategies would not change since playing s1 = 1
3v1 is the best response against any bidding

strategy in which bidder 2 plays a fraction of its value. Similarly, this also holds for a risk-neutral
bidder 2, for whom bidding s2 = 1

2v2 is a best response for bidder 1 playing 1
3v1.

Question 6 (6 + 8 points)

Consider the following extension of the sponsored search setting of bidders with quasi-linear utility
functions: Each bidder i ∈ I now has a publicly known quality βi in addition to the private valuation
vi per click. As usual, slot j has a click-through rate of αj with α1 ≥ α2 ≥ . . . ≥ αk. Due to the
quality of the bidder, the adjusted click-through rate of a slot is βiαj and hence bidder i derives a value
of αj · βi · vi from obtaining the j-th slot.

a) Describe a direct strategy-proof mechanism that maximizes the utilitarian social welfare for this
setting where bidders i ∈ I report their valuations v̂i. Describe how you assign bidders to slots
and de�ne the payments for each bidder. De�ne the payment for a winning bidder i as a function
of α1, . . . , αk and βh, v̂h for h ∈ I. You do not need to provide a proof that the mechanism is
strategy-proof.

b) Consider the example with k = 3 slots with click-through rates α1 = 10, α2 = 5, α3 = 2 and four
bidders with valuations and qualities given in Table 1:

i vi βi

1 8 0.375
2 6 1
3 5 0.8
4 2 0.5

Table 1: Valuations for Question 6b

Calculate the welfare-maximizing allocation and VCG-payments for the bidders in this example.

Solution:
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a) Allocation: Sort the bidders non-decreasing in βi · v̂i. Then assign the slot with the l-th highest
click-through rate to the agent with the l-th highest βi · v̂i. Let w.l.o.g. the bidders be sorted
like this. Then bidder i for i ≤ k has to make the following payment:

pi =
i−1∑
j=1

βj · v̂j · αj +
k+1∑

j=i+1

βj · v̂j · αj−1 −

i−1∑
j=1

βj · v̂j · αj +
k∑

j=i+1

βj · v̂j · αj


=

k∑
j=i+1

βj · v̂j · (αj−1 − αj) + βk+1 · v̂k+1 · αk

where v̂j is de�ned as 0 for all j > |I|.

b) The welfare-maximizing allocation is to assign slot 1 to bidder 2, slot 2 to bidder 3, and slot 3
to bidder 1 for a welfare of 60 + 20 + 6 = 86. The prices are as follows:

� p1 = 57− 26 = 31

� p2 = 77− 66 = 11

� p3 = 82− 80 = 2

Question 7 (12 points)

Consider a two-sided matching markets with agents m1,m2,m3 on the one side and agents w1, w2, w3

on the other side. Agents have the following preferences of being matched to an agent of the other
side:

≻m1
≻m2

≻m3

w2 w3 w2

w3 w2 w1

w1 w1 w3

≻w1
≻w2

≻w3

m3 m2 m2

m2 m3 m1

m1 m1 m3

Prove that there exists only one stable matching given these preferences and state that stable
matching.

Solution:

The men-proposing DA leads to

Step w1 w2 w3

1 m1, m3 m2

2 m3 m1, m2

3 m1 m3 m2

and the matching (m1, w1), (m2, w3), (m3, w2).
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The women-proposing DA leads to

Step m1 m2 m3

1 w2, w3 w1

2 w3 w2 , w1

3 w1, w3 w2

4 w1 w3 w2

and the matching (m1, w1), (m2, w3), (m3,m2).
Men get their best possible woman in the man-proposing DA and the worst possible woman in the

woman-proposing DA. Since the assignments are the same, there cannot be any other woman possible
for any man and hence there is no other stable matching.
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