
Optimization and Learning via Stochastic
Gradient Search

Including Answers

(Period 2, 2022/2023)
Exam 20 December 2022

The exam offers 10 bonous points. The total number of points is 110 while the
grade is capped at 100 points, i.e., your grade will be computed by min(credits, 100)/10.

Problem 1 (45 points)

Let X(θ) be a parameterized random variable with cumulative distribution function
(CDF) Fθ(x), given by

Fθ(x) =

{
0 x ≤ 0;

e−(θ/x)8 x > 0,

where parameter θ > 0. Furthermore, a cost function h(x, θ) is given by

h(x, θ) = x2 +
1

θ2
,

and an objective function

J(θ) = E
[
h(X(θ), θ)

]
= E

[
X2(θ) +

1

θ2

]
(a). (10 points) Apply the inverse transform method (ITM) for generating samples of

X(θ). Give the resulting one-line formula for X(θ).

(b). (10 points) Another method for sampling from distributions is the accept-reject
method (ARM). Discuss some pros and cons of the ITM and ARM.

(c). (10 points) Derive the infinite perturbation analysis (IPA) estimator of J ′(θ).

(d). (10 points) Derive the score function method (SFM) estimator of J ′(θ).

(e). (5 points) Discuss some pros and cons of the IPA and SFM estimators.

Solution:

(a). Solve Fθ(x) = u for x > 0 for any u ∈ (0, 1):

e−(θ/x)8 = u ⇔ x = θ (− log u)−1/8.

Thus, X(θ) = θ (− logU)−1/8 for the uniform U = U(0, 1).

(b). ITM: (+) one-line formula; (+) can be vectorized (+) fixed number of calls to RNG;
(-) not often applicable; (-) might have complicated mathematical functions; (-)
sensitive for numerical errors.
ARM: (+) generally applicable; (-) random number of calls to RNG; (-) acceptance
probability could be small; (-) need an efficient proposal distribution.
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(c). Since θ is scale parameter (see (a)), X ′(θ) = X(θ)/θ. Thus,

DIPA(θ) =
∂

∂x
h(x, θ)|x=X(θ) ×X ′(θ) +

∂

∂θ
h(x, θ)|x=X(θ)

=
2X2(θ)

θ
− 2

θ3
.

(d). First the PDF:

fθ(x) =
∂

∂x
Fθ(x) =

∂

∂x
e−(θ/x)8 =

∂

∂x
e−(x/θ)−8

=
8

θ

(x
θ

)−9
e−(x/θ)−8 =

8

θ

( θ
x

)9
e−(θ/x)8 .

Then the score function

S(θ, x) =
∂

∂θ
log fθ(x) =

∂

∂θ

(
− log θ + 9 log θ −

( θ
x

)8)
=

8

θ
− 8θ7

x8
=

8

θ

(
1−

( θ
x

)8)
.

The objective function is rewritten to J(θ) = E[X2(θ)] + 1/θ2, which yields the
score function estimator,

DSFM(θ) = X2(θ)S(θ,X(θ))− 2

θ3
=

8X2(θ)

θ

(
1−

( θ

X(θ)

)8)− 2

θ3
.

(e). IPA: (+) unbiased estimator; (+) CRN usage; (+) low variance; (-) structural pa-
rameter; (-) interchange conditions.
SFM: (+) unbiased estimator; (+) easily implementable; (-) distributional param-
eter; (-) interchange conditions; (-) high variance.

Problem 2 (20 points)

Consider a container terminal within a large harbour. Ships arrive (randomly, for in-
stance according to a Poisson process) at the terminal, they carry a load of (exactly)
20 containers, and after arrival they are immediately served, or they wait for service.
Service is the unloading of the carried containers. When all the containers of the ship are
unloaded, the ship leaves, and service of the next ship (if present) starts immediately.
There is a single unloading dock that serves ships on a first-come-first-served basis. The
containers of the first ship are unloaded one-by-one, for each it takes a random time (for
instance, exponentially distributed). An unloaded container is transferred to a truck,
that after getting the container drives immediately away to bring the container to its
destination. If there is no truck available, the unloading process is stopped until a truck
arrival. Trucks arrive at the terminal (randomly, for instance according to a Poisson
process).

(a). (10 points) Provide a DES modelling of the container terminal operations. Specify
states, state space, events, event lists, and transition functions.
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(b). (10 points) Check whether the commuting condition holds.

Solution:

(a). DES model.

� States: s = (n1, n2, n3), where

n1 = number of ships present ∈ {0, 1, . . .};
n2 = number of trucks present ∈ {0, 1, . . .};
n3 = number of containers (at the first ship) to unload at the dock ∈ {0, 1, . . . , 20}.

� State space: S = {0, 1, . . .} × {0, 1, . . .} × {0, 1, . . . , 20} \ I, where I are the
infeasible states (0, n2, n3 ≥ 1) (no ship, thus there can be no containers), and
(n1 ≥ 1, n2, 0) (ships present, thus there are containers to unload).

� Events E = {α1, α2, β}, where

α1 = ship arrival;

α2 = truck arrival;

β = container unloaded.

� Event lists L(s) ⊂ E for s ∈ S:

L(0, n2, 0) = {α1, α2};
L(n1 ≥ 1, 0, n3 ≥ 1) = {α1, α2};

L(n1 ≥ 1, n2 ≥ 1, n3 ≥ 1) = {α1, α2, β}.

� State transitions φ(s, e) ∈ S for s ∈ S and e ∈ L(s):

φ
(
(0, n2, 0), α1

)
= (1, n2, 20); (ship arrival)

φ
(
(n1 ≥ 1, n2, n3 ≥ 1), α1

)
= (n1 + 1, n2, n3); (ship arrival)

φ
(
(n1, n2, n3), α2

)
= (n1, n2 + 1, n3); (truck arrival)

φ
(
(n1 ≥ 1, n2 ≥ 1, n3 ≥ 2), β

)
= (n1, n2 − 1, n3 − 1); (container unloaded)

φ
(
(n1 ≥ 2, n2 ≥ 1, 1), β

)
= (n1 − 1, n2 − 1, 20); (container unloaded)

φ
(
(1, n2 ≥ 1, 1), β

)
= (0, n2 − 1, 0). (container unloaded)

(b). The commuting condition says φ(φ(s, e), e′) = φ(φ(s, e′), s) for any state s and
events e, e′ ∈ L(s). This holds clearly for the two arrival events, i.e., e = α1, e

′ =
α2. For instance

(0, 0, 0)
α1→ (1, 0, 20)

α2→ (1, 1, 20);

(0, 0, 0)
α2→ (0, 1, 0)

α1→ (1, 1, 20).
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Now consider the states with the unloading event and an arrival event. We show
the CC in case of {β, α1}; with α2 goes similarly.

(n1 ≥ 1, n2 ≥ 1, n3 ≥ 2)
β→ (n1, n2 − 1, n3 − 1)

α1→ (n1 + 1, n2 − 1, n3 − 1);

(n1 ≥ 1, n2 ≥ 1, n3 ≥ 2)
α1→ (n1 + 1, n2, n3)

β→ (n1 + 1, n2 − 1, n3 − 1);

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(n1 ≥ 2, n2 ≥ 1, 1)
β→ (n1 − 1, n2 − 1, 20)

α1→ (n1, n2 − 1, 20);

(n1 ≥ 2, n2 ≥ 1, 1)
α1→ (n1 + 1, n2, 1)

β→ (n1, n2 − 1, 20);

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1, n2 ≥ 1, 1)
β→ (0, n2 − 1, 0)

α1→ (1, n2 − 1, 20);

(1, n2 ≥ 1, 1)
α1→ (2, n2, 1)

β→ (1, n2 − 1, 20);

Problem 3 (25 points)

Consider the vector field G(θ), for θ ∈ R2.

(i). (10 points) Judging from Figure 1, what is the nature of point θ∗? (stationary,
asymptotically stable, globally asymptotically stable, none)

Figure 1: Vector Field G(θ)

(ii). (5 points) Given is the problem of finding the minimizer of J(θ), for J(θ) ∈ C2,
i.e., you are looking for θ∗ = arg min J(θ). Suppose that G in (i) is coercive for
this problem. What can be said about the relation between G(θ) and the gradient
of J(θ)?

(iii). (10 points) Assume that you use the algorithm

θn+1 = θn − εnG(θn),

for εn = 3/(n + 10)2/3. Does this choice satisfy the convergence conditions for
decreasing ε?
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Solution:

(i). From the arrows you see that the arrows point away from θ∗. This indicates that
θ∗ is a stable point.

Alternatively: You may have misinterpreted the graph as showing the gradient
field. Then θ∗ is a globally asymptomatically stable point for G(θ) = −∇J(θ),
which is obtained from turning the arrows around in the figure.

(ii). We can conclude the G(θ) is a descent direction, i.e., G(θ)∇J(θ) < 0 for all non-
stationary points θ

(iii). We note that
∑ 1

np is finite if and only if p < 1. Applying this to p = 2/3 and
p = 4/3 shows the result.

Problem 4 (20 points)

For a stochastic approximation of the form

θn+1 = θn + εYn

the output shown in Figure 2 was obtained.

Figure 2: Vector Field G(θ)

(i). (10 points) Argue that, judging from the output,

θ∗ ≈ 1

N

k+N∑
i=k+1

θi,

for k = 50.

(ii). (10 points) How would you design an experiment so that you can build a confidence
interval for θ∗ rather than just producing a point estimator as above?

Solution:

5



(i). We use a fixed gain size algorithm. Provided that the appropriate conditions hold,
{θn : n ≥ L}, for L sufficiently large, approximates a mean reverting stationary
process (this is actually an Orstein-Uhlenbeck process). Judging from the figure,
L = 50 is sufficient. As the θn process is (approximately) stationary after n = 50,
averaging will lead an estimator for the mean value (which is a proxy for the
solution).

(ii). To begin, determine n such that θn is approximately normally distributed (which
is will become for n large enough due to our theory). Then sample as many
realization of θn as the budget allows, and produce a confidence interval with it.
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