
Stochastic Gradient Techniques
(Period 2, 2021/2022)

Exam 21 December 2021 12:14-14:15 hr

Problem 1

Let X(θ) be a random variable with cumulative distribution function

Fθ(x) = P(X(θ) ≤ x) =


0 for x < 0;√
θx for 0 ≤ x < 1/θ;

1 for x ≥ 1/θ.

(1)

The parameter is θ ∈ Θ = [1, 6]. A cost function h
(
X(θ), θ) is given by

h
(
X(θ), θ) = 100X(θ) + θ2,

and the objective function is
J(θ) = E

[
h
(
X(θ), θ)

]
.

Figure 1 shows the graph of the objective function J(θ) on [1, 6].

Figure 1: The objective function of Problem 1.

(a). Show how to generate samples from the distribution (1).

(b). Consider the optimization problem minθ>0 J(θ). Argue that a gradient descent algo-
rithm will converge to the true minimizer. How do you adjust the gradient descent
for the fact that θ > 0?

(c). Compute the infinitesimal perturbation analysis (IPA) estimator for dJ(θ)/dθ. You
may assume that interchange conditions apply.

(d). Give the complete simulation algorithm (in pseudocode) that would implement the
stochastic approximation iteration starting at some θ0 ∈ (1, 6) using a decreasing
stepsize (starting at some ε0 > 0) and using the unbiased derivative estimator based
on the IPA method. Include how to draw samples of the X(θ) distribution.

(e). Figure 2 shows the score function method (SFM) estimator of dJ(θ)/dθ. Clearly, it
is not a good estimator. What is the reason that the SFM estimator is not good.
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Figure 2: The score function estimator of Problem 1.

Solution:

(a). Apply the inverse transfomr method.

Fθ(x) = u ⇔
√
θx = u ⇔ x = u2/θ.

(b). The figure shows that J(θ) is continuous, differentiable, convex and unimodal on
[1, 6]. Let θ∗ be the true minimizer. When a proposal solution θn > θ∗, the next
solution θn+1 < θn because J(θ) is increasing for θ > θ∗, and the gradient descent
iteration is θn+1 = θn − εnJ ′(θn) with εn > 0. Similarly, when 0 < θn < θ∗, the
next solution is θn+1 > θn. Thus, when gain size εn is sufficiently small, the next
solution is closer to θ∗.

When θn > θ∗, and the step εnJ
′(θn) > θn, the next solution would be θn+1 < 0,

which is not feasible. To cope with this, the negative θn+1 is projected back into
(0,∞), for instance, θn+1 = 1.

(c).
X(θ) = U2/θ ⇒ X ′(θ) = −U2/θ2 = −X(θ)/θ.

When it is allowed to interchange, the IPA estimator is

DIPA(θ) =
d

dθ
h
(
X(θ), θ) =

d

dθ

(
100X(θ) + θ2

)
= 100X ′(θ) + 2θ = −X(θ)

θ
+ 2θ.

(d). We implement SA iteration θn+1 = θn+εnYn, with update Yn = − 1
k

∑k
i=1D

IPA
i (θn),

the average of k samples of the IPA estimator.
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Algorithm 1 Stochastic Approximation Iteration

Require: θ0 {initial point}
Require: ε0 {initial stepsize}
Require: m {number of iterations}
Require: k {size of mini batch}

1: for n = 0 to m− 1 do
2: for i = 1 to k do
3: Generate U , uniform (0, 1) {RNG}
4: X ← U2/θn
5: Compute Di = −100X/θn + 2θn {i-th IPA sample}
6: end for
7: D ← 1

k

∑k
i=1Di {IPA estimator}

8: θn+1 = θn − ε0/(n+ 1)×D {SA iteration}
9: end for

10: return θm

(e). The interchange conditions do not apply, thus the estimator is not unbiased. The
condition that all densities should be defined on common support, is not satisfied
here. The θ-distribution is defined on [0, θ]. This complicated differentiating wrt θ.

In more detail:
The score function is derived as follows,

Fθ(x) =
√
θx ⇒ fθ(x) =

1

2

√
θ/x

⇒ S(θ;x) =
∂

∂θ
log fθ(x) =

d

dθ
log
√
θ =

1

2θ
(0 < x < 1/θ).

Suppose that you would compute

∂

∂θ

∫
100xfθ(x) dx =

∫
100x

∂

∂θ
fθ(x) dx =

∫
100xS(θ, x) fθ(x). (2)

Then the SFM estimator for J ′(θ) would be

DSFM(θ) = 100X(θ)S(θ,X(θ)) + 2θ = 50X(θ)/θ + 2θ.

This estimator is plotted in Figure 2. However, the interchange (2) is not valid, because
the integral is actually ∫ θ

0

100xfθ(x) dx.

Problem 2

Is X(θ) almost surely Lipschitz continuous in the following cases? And if so, is the Lipschitz
modulus integrable? Just an answer is not sufficient. Provide an analysis where you proof
your claims.

(a). X(θ) = Uθ, where U is the uniform (0,1) random variable, and θ ∈ (0, b) (b > 0).

(b). X(θ) = θI{E < θ}, where E is the standard exponential random variable (i.e. with
mean 1), and θ ∈ (a, b) ⊂ (0,∞).
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(c).

X(θ) =
θ√

|NU − 1|
,

where U is the uniform (0,1) random variable, N is the Poisson random variable with
mean 1, U and N are independent, and θ ∈ (0, 1).
Hint: consider first an arbitrary integer, e.g N = 3, and the function X(θ) =
θ/
√
|3U − 1|.

Solution:

(a). Yes. For any u ∈ (0, 1) sample of U , is X(θ) = uθ differentiable as function of θ on
[0,∞), with X ′(θ) = uθ log u. Note that uθ is decreasing as function of θ on [0,∞),
thus

sup
θ∈(0,b)

|X ′(θ)| = |X ′(0)| = | log u| = − log u = K(u) <∞.

Thus X(θ) is Lipschitz with probability 1.

Figure 3: Two functions X(θ) = uθ on [0, 5], and their derivatives.

The modulus is integrable:

E[K] =

∫ 1

0
(− log u) du

u=e−x
=

∫ ∞
0

xe−x dx = 1.

(b). No. For any y > 0 sample of E, is

X(θ) =

{
0 for 0 < θ ≤ y;

θ for θ > y.

This function (of θ on (a, b)) is discontinuous if y ∈ (a, b), namely in θ = y, and
then it is not Lipschitz.
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Figure 4: Two functions X(θ) = θI{θ > y} on [1, 4].

The probability that E samples from (a, b) is positive.

(c). Yes. First, the case N = 3, then for any sample u ∈ (0, 1), u 6= 1/3, the function
X(θ) = θ/

√
|3u− 1| is linear as function of θ on R. Hence, Lipschitz with finite

modulus K(u) = |X ′(θ)| = 1/
√
|3u− 1|.

Figure 5: Two functions X(θ) = θ/
√
|nu− 1| on [0, 1], and their derivatives.

The modulus satisfies

E[K] =

∫ 1

0

du√
|3u− 1|

=

∫ 1/3

0

du√
1− 3u

+

∫ 1

1/3

du√
3u− 1

=
[
− 2

3

√
1− 3u

]1/3
0

+
[2

3

√
3u− 1

]1
1/3

=
2

3
+

2

3

√
2 <∞.

The function X(θ) = θ/
√
|3u− 1| is not defined, and thus not Lipschitz if u = 1/3,

but, the probability that U = 1/3 is 0. Conclusion, if N = 3, the function X(θ) is
Lipschitz with probability 1.

Now, take N random. For any n = 0, 1, . . . and u ∈ (0, 1), such that nu 6= 1, the
function X(θ) = θ/

√
|nu− 1| is linear as function of θ on R. Hence, Lipschitz with
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finite modulus K(n, u) = 1/
√
|nu− 1|, which satisfies

E[K] = E
[ 1√
|NU − 1|

]
=

∞∑
n=0

P(N = n)E
[ 1√
|nU − 1|

]
,

with for n ≥ 1,

E
[ 1√
|nU − 1|

]
=

∫ 1

0

du√
|nu− 1|

=

∫ 1/n

0

du√
1− nu

+

∫ 1

1/n

du√
nu− 1

=
[
− 2

n

√
1− nu

]1/n
0

+
[ 2

n

√
nu− 1

]1
1/n

=
2

n
+

2

n

√
n− 1.

Thus,

E[K] = P(N = 0) +
∞∑
n=1

P(N = n)
( 2

n
+

2

n

√
n− 1

)
= P(N = 0) + 2e−1

∞∑
n=1

1

n(n!)
+ 2e−1

∞∑
n=1

√
n− 1

n(n!)

≤ P(N = 0) + 2e−1
∞∑
n=1

1

n!
+ 2e−1

∞∑
n=1

1

n!
<∞.

The function X(θ) = θ/
√
|nu− 1| is not defined, and thus not Lipschitz if nu = 1.

But, the probability

P(NU = 1) =
∞∑
n=0

P(N = n)P(U = 1/n) =
∞∑
n=0

P(N = n)× 0 = 0.

Conclusion, the function X(θ) is Lipschitz with probability 1.

Problem 3

Consider the following network of 6 nodes (A, . . . , F ), and 8 links, numbered 1, . . . 8 as
shown.

A

B

C

D

E

F

1

2

3

4

5

6

7

8

It takes a random time Xi to travel on link i. The travel times X1 = X1(θ) and X2 = X2(θ)
depend on the same parameter, and are exponentially disributed with mean θ. The other
travel times X3, . . . , X8 are all exponentially disributed with mean 1. Moreover, X1, . . . , X8

are independent.
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There are 4 routes from A to F :

R1 = A→ B → D → F ;

R2 = A→ B → E → F ;

R3 = A→ C → D → F ;

R4 = A→ C → E → F.

The route time on route j is the sum of the travel times on the links of route j: Tj =
Tj(θ)

∑
i∈Rj

Xi. The maximal route time is

L(θ) = L
(
X1(θ), X2(θ), X3, . . . , X8

)
= max
j=1,2,3,4

Tj(θ)

We are interested in the objective function

J(θ) = E
[
L(θ)

]
.

(a). Derive the measure valued differentiation (MVD) estimator DMVD(θ) for J ′(θ). You
may assume that interchange applies, and you may use the MVD decomposition
of the partial derivative of the exponential probability density function. Give an
algorithm in pseudocode for computing the estimator, including sampling of the
random variables.

(b). Provide a randomized MVD estimator DMVDrand(θ) that is about twice as fast to
compute as the DMVD(θ) estimator of (a). Show that

E
[
DMVDrand(θ)

]
= E

[
DMVD(θ)

]
.

(c). Now, assume that X1 = X1(θ1) and X2 = X2(θ2) are parameterized with different
parameters θ1 and θ2, respectively. Futhermore, the objective function is

J(θ1, θ2) = E
[
L
(
X1(θ1), X2(θ2), X3, . . . , X8

)]
+

10

θ1θ2
.

Work out the details of the simultaneous perturbation stochastic approximation
(SPSA) for the optimization problem min(θ1,θ2) J(θ1, θ2). Give pseudocode of the
associated algorithm.

Solution:

(a). The PDF of the X1(θ) and X2(θ) is

fθ(x) =
1

θ
e−x/θ (x > 0).

We use that the derivative is decomposed as

∂

∂θ
fθ(x) =

( x
θ3
− 1

θ2

)
e−x/θ =

1

θ

( x

θ2
e−x/θ︸ ︷︷ ︸

f+θ ∼Gamma

− 1

θ
e−x/θ︸ ︷︷ ︸

f−θ ∼Exponential

)
.

The associated random variables are denoted by X+, and X−, respectively. The
joint PDF of X1(θ), X2(θ), X3, . . . , X8 is

f(x1, . . . , x8) = fθ(x1)fθ(x2)

8∏
i=3

f(xi),
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with derivative (apply the product rule),

∂

∂θ
f(x1, . . . , x8) =

( ∂
∂θ
fθ(x1)

)
fθ(x2)

8∏
i=3

f(xi) + fθ(x1)
( ∂
∂θ
fθ(x2)

) 8∏
i=3

f(xi)

=
(1

θ

(
f+θ (x1)− f−θ (x1)

))
fθ(x2)

8∏
i=3

f(xi)

+ fθ(x1)
(1

θ

(
f+θ (x2)− f−θ (x2)

)) 8∏
i=3

f(xi)

Then,

J(θ) =

∫
(0,∞)8

L(x1, . . . , x8)f(x1, . . . , x8) dx1, · · · dx8

=

∫
(0,∞)8

L(x1, . . . , x8)fθ(x1)fθ(x2)
8∏
i=3

f(xi) dx1, · · · dx8.

Because interchange is allowed,

J ′(θ) =

∫
(0,∞)8

L(x1, . . . , x8)
∂

∂θ
f(x1, . . . , x8) dx1, · · · dx8

=

∫
(0,∞)8

L(x1, . . . , x8)
1

θ

(
f+θ (x1)fθ(x2)

8∏
i=3

f(xi)− f−θ (x1)fθ(x2)
8∏
i=3

f(xi)

+ fθ(x1)f
+
θ (x2)

8∏
i=3

f(xi)− fθ(x1)f−θ (x2)
8∏
i=3

f(xi)
)
dx1, · · · dx8.

which we are going to model as E[DMVD(θ)]. Hence, the MVD estimator is

DMVD(θ) =
1

θ

(
L
(
X+

1 (θ), X2(θ), X3, . . . , X8

)
− L

(
X−1 (θ), X2(θ), X3, . . . , X8

))
+

1

θ

(
L
(
X1(θ), X

+
2 (θ), X3, . . . , X8

)
− L

(
X1(θ), X

−
2 (θ), X3, . . . , X8

))
In this expression, the parameterized random variables X1(θ) and X2(θ) are decom-
posed in a + and a − version, as mentioned above. The + version has an Erlang-2
distribution with scale θ, and the − version has the original exponential distribution
with scale θ. An Erlang-2 is the sum of two IID exponentially distributed random
variables. In the algorithm below, Xi(θ) and Yi(θ) (i = 1, 2) are IID from the expo-
nential distribution with mean θ. Also we use that exponential variates with mean
µ are generated by −µ log(1−U) for (0, 1)-uniform U . The algorithm exploits that

L
(
X−1 (θ), X2(θ), X3, . . . , X8

)
= L

(
X1(θ), X

−
2 (θ), X3, . . . , X8

)
= L

(
X1(θ), X2(θ), X3, . . . , X8

)
.
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Algorithm 2 MVD Estimator

Require: θ > 0 {parameter of interest}
1: for i = 1 to 2 do
2: Generate Ui from random number generator
3: Xi(θ)← −θ log(1− Ui) {IID θ-exponentials}
4: end for
5: for i = 3 to 8 do
6: Generate Ui from random number generator
7: Xi(θ)← − log(1− Ui) {IID standard exponentials}
8: end for
9: for j = 1 to 4 do

10: Compute Tj {route travel times}
11: end for
12: L(−) ← maxj Tj
13: for i = 1 to 2 do
14: Generate Ui from random number generator
15: Yi(θ)← −θ log(1− Ui) {θ-exponential}
16: Xi(θ)← Xi(θ) + Yi(θ) {Erlang distribution}
17: for j = 1 to 4 do
18: Compute Tj {new route travel times}
19: end for
20: L

(+)
i ← maxTj

21: end for
22: return D ←

∑
i

(
L
(+)
i − L(−))/θ

(b). Note that we need the decomposition of both X1 and X2. In the randomized version
of MVD, we choose one of these two compositions at random. In detail, define the
random variable σ ∈ {1, 2} with uniform distribution P(σ = 1) = P(σ = 2) = 0.5.
If σ = i, decompose variable Xi, i = 1, 2. Hence, the estimator is

DMVDrand(θ) =
2

θ

(
L
(
X+
σ (θ), . . . , X8

)
− L

(
X−σ (θ), . . . , X8

))
.

This estimator needs 2 computations (or runs) of the cost function L, whereas the
full MVD of part (a) needs 4 computations. Note that the constant 1/θ is adapted
for taking account the randomization. The randomized estimator is unbiased:

E
[
DMVDrand(θ)

]
= P(σ = 1)

2

θ
E
[
L
(
X+

1 (θ), X2(θ), X3, . . . , X8

)
− L

(
X−1 (θ), X2(θ), X3, . . . , X8

)]
+ P(σ = 2)

2

θ
E
[
L
(
X1(θ), X

+
2 (θ), X3, . . . , X8

)
− L

(
X1(θ), X

−
2 (θ), X3, . . . , X8

)]
=

1

θ
E
[
L
(
X+

1 (θ), X2(θ), X3, . . . , X8

)
− L

(
X−1 (θ), X2(θ), X3, . . . , X8

)]
+

1

θ
E
[
L
(
X1(θ), X

+
2 (θ), X3, . . . , X8

)
− L

(
X1(θ), X

−
2 (θ), X3, . . . , X8

)]
= E

[
DMVD(θ)

]
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(c). The idea is to approximate the minimizer by the iteration

θn+1 = θn + εnYn, n = 0, 1, . . . ,

where each approximation θn = (θn1, θn2) ∈ (0,∞)2. The update Yn is an approxi-
mation of the gradient ∇J(θ1, θ2). The exact gradient is

∇J(θ1, θ2) = ∇E
[
L(θ1, θ2)

]
+∇ 10

θ1θ2

=

(
∂
∂θ1

E
[
L(θ1, θ2)

]
∂
∂θ2

E
[
L(θ1, θ2)

])−( 10
θ21θ2
10
θ1θ22

)

In iteration n of the SPSA algorithm, the current approximation of the minimizer is
θn = (θn1, θn2). Then, approximating the gradient ∇E

[
L(θn1, θn2)

]
is based on si-

multaneous randomly perturbing the two coordinates of θn. As follows, let ∆n1,∆n2

be i.i.d. uniformly distributed on {−1, 1}, and define the estimator ∇̂E
[
L(θn)

]
∈ R2

by its two coordinates(
∇̂E
[
L(θn)

])
i

=
1

2ηn∆ni(
L
(
X1(θn1 + ηn∆n1), X2(θn2 + ηn∆n2), X3, . . . , X8

)
− L

(
X1(θn1 − ηn∆n1), X2(θn2 − ηn∆n2), X3, . . . , X8

))
(i = 1, 2),

where ηn > 0 is the perturbation size of θn in the n-th iteration. The update in the
SPSA is

Yn = −∇̂E
[
L(θn)

]
−∇ 10

θ1θ2
.

The algorithm below executes m iterations while decreasing the step size by εn =
ε0/(n+ 1), and the perturbation size by ηn = η0/

4
√
n+ 1.
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Algorithm 3 Simultaneous Perturbation Stochastic Approximation

Require: θ0 {initial point}
Require: ε0 {initial stepsize}
Require: η0 {initial perturbation}
Require: m {number of iterations}

1: for n = 0 to m− 1 do
2: εn ← ε0/(n+ 1)
3: ηn ← η0/

4
√
n+ 1

4: for i = 1 to 2 do
5: Generate ∆i ∈ {−1, 1} at random
6: Generate Xi = Xi(θni + ηn∆i) from exponential distribution
7: Generate Yi = Xi(θni − ηn∆i) from exponential distribution
8: end for
9: for i = 3 to 8 do

10: Generate Xi from exponential distribution
11: end for
12: L+ ← L

(
X1, X2, X3, . . . , X8

)
13: L− ← L

(
Y1, Y2, X3, . . . , X8

)
14: D1 ← (L+ − L−)/(2ηn∆1)− 10/(θ2n1θn2) {coordinate 1}
15: D2 ← (L+ − L−)/(2ηn∆2)− 10/(θn1θ

2
n2) {coordinate 2}

16: θn+1 = θn − εn ×D {SPSA iteration}
17: end for
18: return θm

Problem 4

Two single server stations are forming a closed loop. Jobs that complete their service at
station 1 move to station 2 (as soon as there is a free place available), and jobs from station
2 move to station 1 (as soon as there is free place available). Next to the service place,
station 1 has B1 = 5 buffer places and station 2 has B2 = 4 buffer places. There is a
population of 8 jobs that circulate through the system.

(a). Give a DES description of this model. What is the event set, what is the physical
state space, how is the event list defined, and what is the sate-transition mapping?

(b). Does this system satisfy the commuting condition?

Solution:

(a). DES description.

• Events E = {β1, β2B}, where βi is a service completion at station i.

• A state is a vector s = (s1, b1, s2, b2)), where si is the number of jobs at station
i and bi = 0 if station i not blocked and bi = 1 if station i is blocked.

• Event list L(s) = {β1} if s2 = 0, s1 > 0, L(s) = {β2} if s1 = 0, s2 > 0, and
L(s) = {β1, β2} else.
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• The state transition mapping is

φ(β1, s1, 0, s2, 0) = (s1 − 1, 0, s2 + 1, 0) if s2 ≤ B2,

and
φ(β1, s1, 0, B2 + 1, 0) = (s1, 1, s2 + 1, 0) if s2 > B2,

φ(β2, s1, 0, s2, 0) = (s1 + 1, 0, s2 − 1, 0) if s1 ≤ B1,

and
φ(β2, B1 + 1, 0, B2 + 1, 0) = (B1 + 1, 0, s2, 1) if s1 > B2,

Special cases go like

φ(β1, B1 + 1, 0, s2, 1) = (B1 + 1, 0, s2, 0),

and
φ(β2, s1, 1, B2 + 1, 0) = (s1, 0, B2 + 1, 0).

(b). To check (CC) for some state s, note that

φ(β1, φ(β2, (2, 0, B2 + 1, 0)) = φ(β1, (3, 0, B2, 0))

= (2, 0, B2 + 1, 0)

= φ(β2, (2, 1, B2 + 1, 0))

= φ(β2, φ(β1, (2, 0, B2 + 1, 0))

Hence, (CC) holds. All other states follow the same way.
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