
Exam including Answers:
Stochastic Gradient Techniques in Optimization and Learning
period 4.2

December 2020

Problem 1 (10 Credits + 5 Bonus)

Let J(θ) = (θ1 − 5)2 + (θ2 − 8)2, θ ∈ R2. Mapping J(θ) has the obvious global minimum θ∗1 = 5
and θ∗2 = 8. Let B = {θ ∈ R2 : ||θ|| ≤ 2} and consider the optimization problem

min
θ∈B

J(θ). (1)

(a). [10 Credits] Write the problem in (1) in standard form, i.e., specify g and h such that (1)
reads

min
θ∈Θ

J(θ), (2)

Θ = {θ ∈ Rd : g(θ) ≤ 0, h(θ) = 0}

Is the problem well-posed?

(b). [5 Credits][Bouns Question] Argue that the problem

min
θ∈B̂

J(θ),

with J(θ) as in (a), and B̂ = {θ ∈ R2 : ||θ|| < 12} is not well-posed. How can we cast the
above problem into a well-posed problem?

Answer Problem 1

(a) Version 1 (Qualitative Argument) J is continuous and B is compact. By the theorem of
Weierstrass J attains its minimum on B at some point θ∗ in B. Since B is given with a smooth
boundary g(θ) = ||θ|| − 2 and J is smooth as well, the only candidates for a solution satisfy the
KKT conditions. As the solution set is compact, it is not possible to have a sequence of feasible
points θn such that ||θn|| tends to infinity.

Version 2 (Analytical Argument) Let g(θ) = ||θ|| − 2, then (1) reads in standard form

min
θ∈∈Rd

J(θ), (3)

s.t.g(θ) ≤ 0

The solution set is a bounded and closed set (as the ball is compact). Moreover, as J(θ), g(θ) ∈ C1,
the KKT conditions are necessary conditions for a solution of (1). As the solution set is compact,
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it is not possible to have a sequence of feasible points θn such that ||θn|| tends to infinity. Hence,
the problem is well-posed.

Version 3 (Lagrange Argument) The solution of the unconstrained problem is (5, 8). As
(5, 8) 6∈ B the solution to the constrained problem is the point on the surface of B closest to
(5, 8). Therefore the problem is equivalent

min
θ∈Θ

J(θ), (4)

Θ = {θ ∈ Rd : g(θ) = ||θ|| − 2 = 0}.

Then, we to solve
L(θ, λ) = J(θ) + λ(g(θ)− 2).

The KKT conditions come down to ∇L = 0 and we can compute the solution θ∗ (and λ∗). As
the solution set is compact, it is not possible to have a sequence of feasible points θn such that
||θn|| tends to infinity.

(b) The problem is ill-posed as the constraint reads g(θ) < 0 for g(θ) = ||θ|| − 12. However, as
the global minimum does ly inside the ball B, we can - without changing the outcome of the
optimization - replace the problem by

min
θ∈∈Rd

J(θ), (5)

s.t.ĝ(θ) ≤ 0,

for ĝ(θ) ≤ 0. Then according to (a), the problem is the well-posed. Moreover, the constraint is
not active at the solution, so that we can solve the problem from J(θ) = 0 with obvious solution
(5, 8).

Problem 2 (total 20 Credits)

Recall the dynamic fitting model from the lecture. We denote by Z(X) the system response to
input X, where X is a random variable distributed in the experimentation range: X ∈ S. We
model the system response by the mapping

h(θ, x) = θ1 + θ2x.

For θ = (θ1, θ2)> ∈ R2, let

J(θ) =
1

2
E[(Z(X)− (θ1 + θ2X))2]

and the least squares optimization problem becomes

min
θ∈R2

J(θ).

Let θ∗ denote the solution of the problem. Let (xnzn) be samples of (X,Z(X)). For solving this
problem, we apply the gradient descent from the lecture Yn = (zn − θn,1 − θn,2 xn) (1, xn)> and
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the SA algorithm becomes:

θn+1,1 = θn,1 + εn (zn − θn,1 − θn,2 xn),

θn+1,2 = θn,2 + εn xn(zn − θn,1 − θn,2 xn).

From the theory of SA we know that as n tends to infinity, θn,i tends in distribution to a normal
distribution with mean θ∗i and variance σ2

i , for i = 1, 2. Due to time constraints you can only
collect N observation pairs (X,Z(X)). We want to test the hypothesis that θ∗1 6= 0.

(a). [10 Credits] Design a SA algorithm for obtaining estimates of θ∗ that lend themselves for
carrying out a statistical analysis. How would you ”optimally” allocate your computational
budget?

(b). [10 Credits] Describe the actual test of the hypothesis θ∗1 6= 0 for confidence level of α = 0.05.

Answer Problem 2 (a) Let N be the computational budget given in terms of samples
of (X,Z(X)) available. We split N according to N = nk where n is denoting the number of
updates for SA and k denotes the number if iid replications for the SA algorithm. This produces
as output k approximate solutions θn(ωi), 1 ≤ i ≤ k. The connection between the size n and
k is as follows: k should be as large as possible to produce the maximal number of samples for
building confidence intervals; n should a small as possible provided that θn is approximate normal
distributed. Moreover, in case of decreasing ε, we should for n observe that θn(ωi) becomes stable,
and for fixed ε we should see that θn+j(ωi), j ≥ 1, is moving around a fixed mean (= becomes a
mean reverting process).
(b) Determine n, k as in (a). Then produce two confidence intervals for the components of theso-
lution θ∗i for confidence level α. If (0, 0)> is in both confidence intervals, then we cannot reject the
hypothesis H = θ∗ = 0. More specifically, let θ̄n,i be the sample average over (θn,i(ωj) : 1 ≤ j ≤ k),
and st(θ̄n,i) the standard deviation. Then the confidence intervals are given by

(θ̄n,i − z1−α/2st(θ̄n,i)/k, θ̄n,i + z1−α/2st(θ̄n,i)/k)

for i = 1, 2, where zβ denotes the β quantile of the normal distribution.

Problem 3 (total 20 Credits)

We consider the problem of finding the minimum of the mapping

J(θ) = 3θ2 + 6θ sin(θ), θ ∈ R,

which has a unique global minimum at θ∗ = 0. Moreover,

J ′(θ) = 6θ + 6 sin(θ) + 6θ cos(θ), θ ∈ R.

We consider an SA algorithm of the form (deterministic gradient descent with measurement noise)

θn+1 = θn − εn
(
J ′(θn) + Zn

)
= θn − εnYn,
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Figure 1: Decreasing Stepsize

where Zn is the noise in the estimation of J ′(θn), and we assume that {Zn} are mutually inde-
pendent (not necessarily identical distributed). We denote the variance of the nth update by

Vn = E[(Yn − J ′(θn))2|Fn−1] = Var(Zn).

As output of the SA we consider either θn or the so-called Polyak-Rupert average

θ̄n =
1

n+ 1

n∑
i=0

θi.

(a). [10 Credits] Figure 1 shows an example for εn = 0.25/(n + 1) and θ0 = 0.5. The standard
deviation of Zn is set to 2.5. Explain the output: Why is the Polyak-Rupert estimate more
stable than the standard algorithm? Argue that the figure illustrates the fact that the noise
in θn asymptotically disappears, and explain why this is to be expected.

(b). [10 Credits] Figure 2 shows an example for εn = 0.25/(n + 1) and θ0 = 0.5, where the
standard deviation of Zn is set to n/2. Can any conclusions be drawn from this output?
Explain the behaviour of the algorithm.

Answer Problem 3 (a) The problem is well-posed and the negative gradient is coercive and
unbiased. The noise is iid with bounded variance. Hence, θn converges a.s. to the true solution
of the problem. In the picture θn becomes a stable horizontal line, which shows that the noise
disappears, as expected. The PR version is more stable as the effect a deviation from the mean
is damped by averaging.

(b) The variance of the gradient estimator (=vector field) is n2/4. Hence, it follows from∑
n

ε2n
n2

4
=∞

that the variance condition is violated. Indeed, for n increasing the variance gets bigger and
eventually the entire outpurt of the algorithm is blurred by the noise. No answers can be drawn
from this figure.
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Figure 2: Decreasing Stepsize

(The only remedy is to use the variance control scheme, which is this case, however, would
mean to use n2 iid samples for update θn.)

Problem 4 (total 30 Credits)

Let Zi(θ), i = 1, 2, 3, 4 be independent, identically distributed random variables on R with the
normal (θ, 1) distribution for θ ∈ R. Define random variables Xi(θ) = eZi(θ), i = 1, 2, 3, 4, and
define the output function

L
(
x1, x2, x3, x4) = min{x1x2, x3x4}, x1, . . . , x4 ∈ (0,∞).

The objective is to minimize the cost function

J(θ) = E
[
L
(
X1(θ), X2(θ), X3(θ), X4(θ)

)]
+

1

2
θ2, (6)

with respect to θ. Figure 3 shows that there is a local minimum on [−3, 1].
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Figure 3: The objective function of Problem 4.

(a). [5 Credits] Argue that the problem is well-posed.

(b). [5 Credits] Set G(θ) = −dJ(θ)/dθ and argue that G(θ) is coercive for the optimization
problem.

(c). [10 Credits] Compute the infinitesimal perturbation analysis (IPA) estimator for dJ(θ)/dθ.

(d). [10 Credits] Give the complete simulation algorithm (in pseudocode) that would implement
the stochastic approximation iteration starting at some θ0 ∈ (−3, 1) using a decreasing
stepsize (starting at some ε0 > 0) and using the unbiased derivative estimator based on the
IPA method. Include how to draw samples of the Xi(θ) samples.

Answers:

(a). The graph of the function J(θ) shows that J(θ) is continuous and at least twice differentiable,
with J(θ) → ∞ when |θ| → ∞. Thus, we can find 0 < K < ∞ such that (i) the global
minimization minθ∈R J(θ) is equivalent to min−K≤θ≤K J(θ), meaning that [−K,K] contains
the global minimum; and (ii) the boundaries are not active, meaning that the KKT points
are the stationary points in [−K,K].

Analytical approach: Note, the problem can be reduced to a simple optimization. Let Wi, i =
1, 2, 3, 4 be i.i.d. standard normal random variables and define

α = E
[

min
{
eW1+W2 , eW3+W4

}]
,

then α > 0, and

E
[
L
(
X1(θ), X2(θ), X3(θ), X4(θ)

)]
= E

[
min

{
eZ1(θ)+Z2(θ), eZ3(θ)+Z4(θ)

}]
= E

[
min

{
e2θ+W1+W2 , e2θ+W3+W4

}]
= αe2θ.

Thus J(θ) = αe2θ + θ2/2, which shows that (i) J(θ) is smooth on R; (ii) J(θ) is convex; (iii)

limθ→−∞ J(θ) = ∞; (iv) limθ→∞ J(θ) = ∞. Thus J(θ) has a unique minimum that satisfies

2αe2θ + θ = 0.
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(b). The function J(θ) is convex on [−K,K], thus with G = −J ′, any trajectory {θn, n = 0, 1, . . .}
defined by θn+1 = θn + εnG(θn) stays within the compact set [−K,K] when the gradients
remain bounded and εn > 0 sufficiently small. Clearly this is the case, |G(θ)| ≤ C < ∞ for
all θ ∈ [−K,K]. Hence, the trajectory moves into the direction of the stable point of the
ODE dx(t)/dt = G(x(t)) which is the stationary point.

(c). We may assume interchange of differentiation and expectation.

d

dθ
J(θ) =

d

dθ

(
E
[
L
(
X1(θ), X2(θ), X3(θ), X4(θ)

)]
+

1

2
θ2
)

= E
[ d
dθ
L
(
X1(θ), X2(θ), X3(θ), X4(θ)

)]
+ θ

= E
[ 4∑
i=1

∂

∂Xi
L
(
X1(θ), X2(θ), X3(θ), X4(θ)

) d
dθ
Xi(θ) + θ

]
,

with

∂

∂x1
L(x1, x2, x3, x4) = x2I{x1x2 < x3x4}

∂

∂x2
L(x1, x2, x3, x4) = x1I{x1x2 < x3x4}

∂

∂x3
L(x1, x2, x3, x4) = x4I{x3x4 < x1x2}

∂

∂x4
L(x1, x2, x3, x4) = x3I{x3x4 < x1x2}

d

dθ
Xi(θ) =

d

dθ
eZi(θ) = eZi(θ)

d

dθ
Zi(θ) = Xi(θ),

because Zi(θ) = θ +N(0, 1). Hence, the IPA estimator is

D =

{
2X1(θ)X2(θ) + θ if X1(θ)X2(θ) < X3(θ)X4(θ)

2X3(θ)X4(θ) + θ if X3(θ)X4(θ) < X1(θ)X2(θ)

= 2 min
{
X1(θ)X2(θ), X3(θ)X4(θ)

}
+ θ.

(d). This is the algorithm with a single sample of the IPA estimator D per iteration.
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Algorithm 1 Stochastic Approximation Iteration

Require: θ0 {initial point}
Require: ε {initial stepsize}
Require: M {number of iterations}

1: for n = 0 to M − 1 do
2: for i = 1 to 4 do
3: Generate Wi ∼ N(0, 1) {standard normal}
4: Zi ← θn +Wi

5: Xi ← exp(Zi)
6: end for
7: Compute L = min{X1X2, X3X4} {output function}
8: D ← 2L+ θn {ipa estimator}
9: θn+1 = θn − ε/(n+ 1)×D

10: end for
11: return θM

Problem 5

Let Z(θ) be a random variable on R, parameterized by θ ∈ Θ. Denote its probability density
function (PDF) by fZ(z; θ). Assume that fZ is differentiable with respect to θ for all z ∈ R.

Define a random variable X(θ) = h
(
Z(θ)

)
for a differentiable monotone function h : R→ R.

Recall from Probability Theory that X(θ) has PDF

fX(x; θ) = fZ
(
h−1(x); θ

) d

dx
h−1(x).

(a). Let Z(θ) have the normal (θ, 1) distribution, and X(θ) = eZ(θ), where θ ∈ Θ = R. Recall

fZ(z; θ) =
1√
2π

e−
1
2

(z−θ)2 , z ∈ R.

Compute the score functions SZ
(
θ;Z(θ)

)
and SX

(
θ;X(θ)

)
.

(b). Refer to Problem 4 for the objective function J(θ) in display (6). Compute the score function
estimator for dJ(θ)/dθ.

(c). [Bonus]. Let Z(θ) have some general distribution with a given score function SZ
(
θ;Z(θ)

)
.

Now find the expression for the score function of X(θ) = h
(
Z(θ)

)
.

Answers:

(a). The score function of Z(θ):

SZ(θ; z) =
d

dθ
log fZ(z; θ) =

d

dθ

(
− log

√
2π − 1

2
(z − θ)2

)
= z − θ.

Thus SZ
(
θ;Z(θ)

)
= Z(θ)− θ.
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The score function of X(θ) = eZ(θ). For h(z) = ez, the inverse is h−1(x) = log x, thus the
PDF of X(θ) is

fX(x; θ) = fZ
(
h−1(x); θ

) d

dx
h−1(x) =

1

x
√

2π
e−

1
2

(log x−θ)2 , x > 0.

From this,

SX(θ;x) =
d

dθ
log fX(x; θ) =

d

dθ

(
− log(x

√
2π)− 1

2
(log x− θ)2

)
= log x− θ.

Thus SX
(
θ;X(θ)

)
= logX(θ)− θ.

(b). First, the Xi(θ)’s are i.i.d., thus their joint PDF is the product

f(x1, x2, x3, x4; θ) =

4∏
i=1

fX(xi; θ).

Second, the score function of this PDF is

d

dθ
log f(x1, x2, x3, x4; θ) =

d

dθ

4∑
i=1

log fX(xi; θ) =
4∑
i=1

SX(θ;xi)

=
4∑
i=1

(log xi − θ) =
4∑
i=1

log xi − 4θ = log
4∏
i=1

xi − 4θ.

Hence, for the score function estimator of dJ(θ)/θ we assume interchange of differentiation
and integration to get.

d

dθ
J(θ) =

d

dθ

(
E
[
L
(
X1(θ), X2(θ), X3(θ), X4(θ)

)]
+

1

2
θ2
)

=
d

dθ

∫
L(x1, x2, x3, x4) f(x1, x2, x3, x4; θ) dx1dx2dx3dx4 + θ

=

∫
L(x1, x2, x3, x4)

d

dθ
f(x1, x2, x3, x4; θ) dx1dx2dx3dx4 + θ

=

∫
L(x1, x2, x3, x4)

( d
dθ

log f(x1, x2, x3, x4; θ)
)
f(x1, x2, x3, x4; θ) dx1dx2dx3dx4 + θ

=

∫
L(x1, x2, x3, x4)

(
log

4∏
i=1

xi − 4θ
)
f(x1, x2, x3, x4; θ) dx1dx2dx3dx4 + θ

= E
[
L
(
X1(θ), X2(θ), X3(θ), X4(θ)

) (
log

4∏
i=1

Xi(θ)− 4θ
)]

+ θ.

The estimator is

D = L
(
X1(θ), X2(θ), X3(θ), X4(θ)

)(
log

4∏
i=1

Xi(θ)− 4θ
)

+ θ

= min
{
X1(θ)X2(θ)X3(θ)X4(θ)

} (
log

4∏
i=1

Xi(θ)− 4θ
)

+ θ.
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(c). Using the definition of score function and the transformation formula,

SX(θ;x) =
d

dθ
log fX(x; θ) =

d

dθ
log
(
fZ
(
h−1(x); θ

) d

dx
h−1(x)

)
=

d

dθ

(
log fZ

(
h−1(x); θ

)
+ log

d

dx
h−1(x)

)
=

d

dθ
log fZ

(
h−1(x); θ

)
= SZ

(
θ;h−1(x)

)
.

Thus,
SX
(
θ;X(θ)

)
= SZ

(
θ;h−1

(
X(θ)

))
.
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