
Exam Optimization under Uncertainty 4.2

December 2018

Problem 1 (10 Credits)

Let J ∈ C2 and consider the steepest descent algorithm :

θn+1 = θn − εn∇θJ(θn). (1)

Suppose that the gradient is bounded by some constant L, i.e., ‖∇θJ(θ)‖ ≤ L, for all θ ∈ Rd. Let
εn = 1/(n+ 1) and show that

‖θn‖ ≤ ‖θ0‖ + L(ln(n+ 1) + 1).

Hint: You may use that
∑n

k=1 1/k ≤ ln(n+ 1) + 1.

Answer Problem 1: By construction

θn = θ0 −
n−1∑
k=0

εk∇θJ(θk).

Therefore,

‖θn‖ ≤ ‖θ0‖+

n−1∑
k=0

‖εk∇θJ(θk)‖ ≤ ‖θ0‖+

n−1∑
k=0

1

k + 1
L = ‖θ0‖+

n∑
k=1

1

k
L = L(ln(n+ 1) + 1).

Problem 2 (total 10 Credits)

The gradient-field of a function J(θ) is shown in Figure 1. Apply a steepest descent algorithm for
finding the minimum of J(θ).

(a). [5 Credits] Discuss with Figure 1 for the ODE

d

dt
x(t) = −∇J(x(t))

the nature of point (0, 0) (stable, asymptotically stable, or unstable).

(b). [5 Credits] Judging from the range the figure, is this problem well-posed and is the vector-field
coercive?

Answer Problem 2: (a)(0, 0) is a saddle point. Therefore, it is neither a stable nor is it
asymptotically stable.

(b) The vector field points away from the origin along the diagonal (x, x) and (−x,−x).
Therefore, the problem is not well-posed (there seems to be no minimum) and the ODE is not
coercive. The stable points of the ODE are no locations of a minimum.
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Figure 1: Gradient-field of J(θ)

Problem 3 (total 20 Credits)

Consider the algorithm
θn+1 = θn + εnYn,

for finding some optimal solution θ∗, for either εn ↓ 0 or εn = ε, for n ∈ N. Suppose that evalu-
ating Yn requires one sample from an underlying process. Suppose your computational budget is
sufficient to sample N samples from the underlying process.

(a). [5 Credits] Suppose you use your entire simulation budget to simulate one sample of θN .
What conclusions can be drwan from this in case of decreasing ε and in case of fixed ε?

(b). [5 Credits] Suppose you split your simulation budget to produce k independent runs of the
algorithm yielding θn(ωi), 1 ≤ i ≤ k, for each of the runs, where kn = N . What conclusions
can be drawn from this data in case of decreasing ε and in case of fixed ε?

(c). [10 Credits] For the given simulation budget N describe the best setup for your optimization
algorithm that allows to produce a statistical justifiable assessment on the optimal solution
θ∗.

Answer Problem 3: (a) For decreasing ε we obtain by θN an approximation of θ∗ due to a.s.
convergence of θn towards θ∗. For fixed ε we can draw no conclusion on θ∗ due to the weak
convergence.

(b) In both cases we can test for normality of θn and in case {θi : 1 ≤ i ≤ k} is approx.
normal, we can construct a confidence interval for θ∗.

(c) There is a trade-off between number of independent replications and length of the indi-
vidual runs. For decreasing ε, the lengths of the runs should be long enough so that the θn values
are relatively stable. Independent replications are then used to produce confidence intervals for
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θ∗. In the fixed ε case, we should take the runs long enough so the the average seems to become
stable and use then use independent replications are then used to produce confidence intervals
for θ∗ (of course after checking for normality).

Problem 4 (total 30 Credits)

It takes an Erlang-(3, 1/θ)-distributed time, denoted by X(θ), for a packet to traverse a commu-
nication channel. More formally, X(θ) has pdf

f(x, θ) =
1

2θ3
x2e−x/θ,

for x ≥ 0, and E[X(θ)] = 3θ. If the communication time exceeds a threshold value α, then the
company has to pay a fine of c Euros per unit of excess time. The cost of operating the channel
at “speed factor” θ is 1/θ2. Let

J(θ) = E[cmax(X(θ)− α, 0)] +
1

θ2
,

θ > 0. Consider the problem
min
θ>0

J(θ).

(a). [5 Credits] Argue that the problem is well-defined.

(b). [5 Credits] Take G(θ) = −dJ(θ)/dθ and argue that G(θ) is coercive for the optimization
problem.

(c). [5 Credits] Compute the SF estimator for dJ(θ)/dθ (you don’t have to check unbiasedness).

(d). [5 Credits] Using the SF estimator from (a) provide a descent algorithm for finding the
solution of the minimization problem.

(e). [5 Credits] You already argued that the problem is well-defined and the vector field is coercive.
Letting εn = 1/(n+ 1), what properties have to be checked for establishing a.s. convergence
of your algorithm to the location of the minimum?

(f). [5 Credits] Any descent direction will lead the algorithm Yn to the solution. Provide an
alternative coercive vector field such that the corresponding update Ỹn has less variance
than your steepest descent algorithm in (d).

Answer Problem 4: (a) The part E[cmax(X(θ)−α)] is increasing in θ and minimization will
push for small values of θ. The cost 1/θ2 pushed for large values. Therefore, it is conceivable that
the solution is at some point θ > 0. We may replace the optimization problem by the equivalent
problem:

min J(θ) s.t. θ ∈ Θ = {θ̂ : g(θ̂) = δ − θ̂ < 0},

for some δ > 0 small. By construction, the constraint g(θ) = δ − θ is not active. So the only
remaining KKT point is the stationary point of J(θ).
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(b) The mapping J(θ) seems to be smooth with continuous derivative. For G(θ) = −J ′(θ), the
only stable point are the stationary points of J(θ). We show that the vector field stays bounded.
Let

V (t) = J(x(t))− J(θ∗) ≥ 0.

Differentiating with respect to t gives

d

dt
V (t) =

d

dt
x(t)J ′(x(t)) = −(J ′(x(t))2 < 0.

Therefore, V (t) is bounded from below and monotone decreasing, and therefore has a limit. Hence,

V (0) ≥ sup
t≥0

V (t) ≥ lim
t→∞

V (t) ≥ 0.

Therefore, x(t) stays bounded along trajectories.
(c) The score function is obtained by

∂

∂θ
f(x, θ) =

∂

∂θ

(
1

2θ3
x2e−x/θ

)
=
x2(x− 3θ)

2θ5
e−x/θ.

Hence, we obtain for the Score Function

SF(x, θ) =
x− 3θ

θ2
.

(d) Let

Yn = cmax(X(θn)− α, 0)SF(X(θn), θn)− 2

θ3n
.

Noting that X(θ) = θX(1), we obtain

Yn = cmax(X(θn)− α, 0)
X(θn)− 3θn

θ2n
− 2

θ3n

= cmax(θnX(1)− α, 0)
θnX(1)− 3θn

θ2n
− 2

θ3n

= cmax(θnX(1)− α, 0)
X(1)− 3

θn
− 2

θ3n

=

{
c (θnX(1)−α)(X(1)−3)

θn
− 2

θ3n
, if θnX(1) > α;

− 2
θ3n
, otherwise.

Then, the algorithm is
θn+1 = θn − εnYn.

(e) Given the estimator is unbiased. The key condition is
∞∑
n=1

1

(n+ 1)2
E[(Yn − J(θn))2|Fn−1].

Since the variance is of order 1/θn, the variance control scheme has to be used, for example, for
values of θn < 1, to guarantee that the algorithm converges to the true minimum

(f) Typically IPA has less variance and taking Ỹn via an unbiased IPA estimator decreases
the variance. Alternatively, you may take Ỹn as a batch means, i.e., average over a number of
i.i.d. gradient samples, then the resulting algorithm has less variance.

In principle, the gradient estimator is just an implementation of the gradient field. An example
of an alternative coercive vector field with less variance is, e.g., G̃(θ) = −αJ(θ) for 0 < α < 1.
Then the variance of Yn is scaled by the factor α2 and thus smaller.
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Problem 5 (30 Credits)

Again consider L(θ) = E
[
h
(
X(θ)

)]
, where

h
(
X(θ)

)
= c max

{
X(θ)− α, 0

}
,

for some given α, c > 0, and where X(θ) has an Erlang- (3, 1/θ)-distribution for θ > 0 (see
Problem 4).

(a). [10 Credits] Recall your SF estimator of Problem 4(c) for being an unbiased estimator of
L′(θ) (forget the 1/θ2 in the objective function of Problem 4). To be unbiased a (nontrivial)
condition is required concerning the derivative ∂/∂θf(x, θ) of the pdf of X(θ). Formulate
this condition. Then check that this condition holds in this problem.

(b). [5 Credits] Derive the MVD estimator DMVD(θ) of L′(θ).
Hint: it is a difference of two estimators involving Erlang- (4, 1/θ) and Erlang-(3, 1/θ) dis-
tributions.

(c). [10 Credits] Give the simulation algorithm for generating n replications of DMVD(θ), includ-
ing how you generate from the Erlang-(4, 1/θ) and Erlang-(3, 1/θ) distributions. Make sure
to exploit common random numbers as much as possible. From these n replications, give the
sample average, the sample variance, and the standard error. Explain what the purpose is
of these numbers.

(d). [5 Credits] Give the expression for a randomized MVD estimator DMVDrand(θ) that in-
volves a single estimator (in stead of the difference in (b)). Show that E

[
DMVDrand(θ)

]
=

E
[
DMVD(θ)

]

Answer Problem 5:

(a). Suppose that we wish the derivative L′(·) in some θ0 > 0. Consider an open interval around
θ0: 0 < a < θ0 < b <∞. Then the condition is∫ ∞

0
|h(x)| sup

θ∈(a,b)

∣∣ ∂
∂θ
f(x, θ)

∣∣ dx <∞.
First we compute the sup in any x > 0 (see Problem 4(c) for the derivative of the density
function wrt θ):

sup
θ∈(a,b)

∣∣∣ ∂
∂θ
f(x, θ)

∣∣∣
= sup

θ∈(a,b)

∣∣∣x2(x− 3θ)

2θ5
e−x/θ

∣∣∣
= sup

θ∈(a,b)

∣∣∣(x
θ
− 3
) x2

2θ4
e−x/θ

∣∣∣
≤
(

sup
θ∈(a,b)

∣∣x
θ
− 3
∣∣) x2

2a4
e−x/b

≤
(x
a

+ 3
) x2

2a4
e−x/b
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Furthermore, h(x) = c(x− α) if x > α, and otherwise h(x) = 0 Thus,∫ ∞
0
|h(x)| sup

θ∈(a,b)

∣∣ ∂
∂θ
f(x, θ)

∣∣ dx ≤ ∫ ∞
α

c(x− α)
(x
a

+ 3
) x2

2a4
e−x/b dx.

The integrand is of the form xpe−x which is integrable.

(b).

∂

∂θ
f(x, θ) =

x2(x− 3θ)

2θ5
e−x/θ =

x3

2θ5
e−x/θ − 3x2

2θ4
e−x/θ

=
3

θ

( x3

6θ4
e−x/θ︸ ︷︷ ︸

Erlang- (4, 1/θ)

− x2

2θ3
e−x/θ︸ ︷︷ ︸

Erlang- (3, 1/θ)

)
.

Let X(+)(θ) be the random variable with Erlang- (4, 1/θ) distribution, and X(−)(θ) the
random variable with Erlang- (3, 1/θ) distribution. Then

DMVD(θ) =
3

θ

(
h
(
X(+)(θ)

)
− h
(
X(−)(θ)

))
.

(c). An Erlang- (k, λ) random variable is the sum of k independent Exponential-λ variables. Let
E1(θ), . . . , E4(θ) be four i.i.d. random variables with Exponential-1/θ distribution. Then,
we set X(−)(θ) =

∑3
i=1Ei(θ), and X(+)(θ) = X(−)(θ) + E4(θ). Simulating an E(θ) is by

applying the inverse transform: E(θ) = −θ ln(1−U), where U is uniform-(0, 1), obtained by
a call of the random number generator. Thus,

Algorithm 1 MVD estimation

1: D ← zeros(n) {vector of zeros}
2: for k = 1 to n {generate n replications} do
3: for i = 1 to 4 do
4: Ui

D∼ U(0, 1) {call RNG}
5: Ei ← −θ ln(1− Ui)
6: end for
7: X(−) ← E1 + E2 + E3

8: h(−) ← cmax{X(−) − α, 0}
9: X(+) ← X(−) + E4

10: h(+) ← cmax{X(+) − α, 0}
11: D[k]← (h(+) − h(−))/θ
12: end for
13: return vector D

The sample average

Dn(θ) =
1

n

n∑
k=1

Dk(θ)
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is used for estimating E[D(θ)] = L′(θ). The sample variance

S2(θ) =
1

n− 1

n∑
k=1

(
Dk(θ)−Dn(θ)

)2
is used for estimating Var(D(θ)). From this we estimate the standard error of Dn(θ) by√
S2(θ)/n. Call this σ, then 100(1− α)% confidence intervals are constructed by(

Dn(θ)− tn−1,1−α/2σ,Dn(θ)− tn−1,1−α/2σ),

where tn−1,1−α/2 is the 1 − α/2-quantile of the student-t distribution with n − 1 degrees of
freedom, and where α is typically 0.05 or 0.1.

(d). In stead of computing both X(+)(θ) and X(−)(θ) in each iteration of the algorithm, we
compute one of these chosen at random. Let B ∈ {0, 1} be a Bernoulli random variable with
P(B = 0) = P(B = 1) = 1/2. Then

DMVDrand(θ) =
6

θ

(
h
(
X(+)(θ)

)
1{B = 1} − h

(
X(−)(θ)

)
1{B = 0}

)
.

Its expected value:

E
[
DMVDrand(θ)

]
=

6

θ

(
E
[
h
(
X(+)(θ)

)]
P(B = 1)−E

[
h
(
X(−)(θ)

)]
P(B = 0)

)
=

3

θ

(
E
[
h
(
X(+)(θ)

)]
−E

[
h
(
X(−)(θ)

)])
= E

[
DMVD(θ)

]
Bonus Question (total 10 Credits)

With the definitions and notation in place that have been introduced in Problem 3. Let

L(θ) = E[cmax(X(θ)− α, 0)],

θ > 0. Consider the problem of finding θ∗ such that

L(θ∗) = β,

for some β > 0. Provide a descent algorithm and discuss sufficient condition for its convergence
to θ∗.

Answer Bonus Question: Since X(θ) is monotone increasing in θ, L(θ) is monotone in-
creasing. We let

G(θ) = β − L(θ).

Since L(θ) is monotone increasing, point θ∗ is for the ODE

d

dt
x(t) = β − L(x(t)) = G(x(t))

asymptotically stable. We thus consider

θn+1 = θn + εn(β − cmax(X(θn)− α, 0)).
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We let εn = 1/(n+ 1) and
Yn = β − cmax(X(θn)− α, 0)),

which is an unbiased estimator for G(θn), and it remains to ensure the variance condition. As
usual,

Vn = E
[
(β − cmax(X(θn)− α, 0)−G(θn))2

∣∣Fn−1] = c2Var(max(X(θn − α), 0).

For the variance conditon to hold we need∑
n

ε2nVn = c2
∑
n

1

(n+ 1)2
Var(max(X(θn)− α, 0)

to be finite. The variance of X(θn) is not bounded on (0,∞) and we require the variance control
scheme, i.e., replacing max(X(θn), 0) by the sample average over k iid samples of max(X(θn), 0).
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