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Problem 1 (10 Credits)

Let J ∈ C2 be such that the gradient is a bounded and Lipschitz continuous function and consider
the fixed ε algorithm:

θn+1 = θn − ε∇θJ(θn). (1)

Suppose that θn converges to some finite admissible θ∗ as n tends to infinity. Show that θ∗ is a
stationary point of J .

Answer Problem 1: Convergence of θn to θ∗ implies

lim
n→∞

∇θJ(θn) = 0.

We have assumed that ∇θJ is Lipschitz continuous and thus continuous, which gives

0 = lim
n→∞

∇θJ(θn) = ∇θJ
(

lim
n→∞

θn

)
= ∇θJ(θ∗),

and we conclude that θ∗ is a stationary point.

Problem 2 (total 30 Credits)

Consider the following reservoir model. Per time period the amount of inflowing fluid is It and
the amount of outflowing liquid is Ot. Let Lt ≥ 0 denote the level of the fluid in the reservoir at
the end of the t-th time period. Then,

Lt+1 = max(Lt + It −Ot, 0).

Assume that It = It(θ) follows a Gamma(2, θ−1) distribution, i.e., It behaves like the sum of
two independent exponentially distributed random variables with mean θ each, and that Ot is
log-normal distributed independent of It. The cost for having an inflow at θ, is given by a θ−2.
Let

J(θ) = E[Lt0+1|Lt0 = l] + θ−2,

for some t0 > 2 and l > 0, and consider the problem

min
θ
J(θ).

In words, given the reservoir level is l > 0, we want to regulate the inflow so that the expected
reservoir level at the end of the next time period is minimal.

You may assume that there is a unique stationary point to the function J(θ) that provides
the location of the minimum.



(a). [5 Credits] Compute the IPA estimator for ∇J(θ) (you don’t have to check unbiasedness).

(b). [5 Credits] Using the IPA estimator from (a) provide a descent algorithm for finding the
solution of the minimization problem.

(c). [5 Credits] Letting εn = 1/(n+ 1), what properties have to checked for establishing a.s. con-
vergence of your algorithm to the location of the minimum?

(d). [15 Credits] Now assume that you are interested adjusting the fluid level to α, that is, you
want to find θ∗ such that

E[Lt0+1|Lt0 = l] = α.

For this exercise we keep l and t0 fixed and we use simulation to find the “right” θ∗ for period
t0 + 1. Provide a descent algorithm and discuss sufficient condition for its convergence to
θ∗. You may assume that the solution θ∗ is asymptotically stable for your vector field G(θ)
(which you will provide) and that G(θ) is continuous and bounded. Moreover, assume that
Var(E[Lt0+1|Lt0 = l]) ≤ c for all n.

Answer Problem 2: (a) By assumption It = It(θ) follows a Gamma(2, θ−1) distribution,
therefore we may let

It(θ) = X1(θ) +X2(θ),

where Xi(θ) are independent exponential with mean θ. Then,

d

dθ
It(θ) =

d

dθ
(X1(θ) +X2(θ)) =

1

θ
It(θ).

Under the condition that Lt0 = l, the IPA estimator becomes

d

dθ
Lt0+1 =

1

θ
It(θ)1l+It(θ)−Ot≥0 − 2θ−3.

(b) Let

Yn = −
(

1

θ
It(θ)1l+It(θ)−Ot≥0 − 2θ−3

)
,

then

θn+1 = θn −
1

n+ 1

(
1

θ
It(θ)1l+It(θ)−Ot≥0 − 2θ−3

)
.

(c) The conditions to be checked are (i) unbiasedness of the algorithm, i.e.,

E[Yn|Fn−1] = ∇J(θn)

and the variance condition

∞∑
n=1

1

n+ 1
E
[(
−
(1

θ
It(θ)1l+It(θ)−Ot≥0 − 2θ−3

)
+∇J(θn)

)2∣∣Fn−1] <∞.
(d) Let

G(θ) = α− E[Lt0+1|Lt0 = l].



Since E[Lt0+1|Lt0 = l] is monotone increasing, point θ∗ is for the ODE

d

dt
x(t) = α− E[Lt0+1|Lt0 = l] = G(x(t))

asymptotically stable. We thus consider

θn+1 = θn + εn(α−max(l + It(θ)−Ot, 0)).

We let εn = 1/n. Yn = α−max(l + It(θn)−Ot, 0) is unbiased for G(θn) and it remains to check
the variance condition. As usual,

Vn = E
[
(α−max(l + It(θn)−Ot, 0)−G(θn))2

∣∣Fn−1] = Var(max(l + It(θn)−Ot, 0)).

As we have assumed that the variance is uniformly bounded by some constant c and we compute
as usual ∑

n

ε2nVn =
∑
n

ε2nVar(max(l + It(θn)−Ot, 0)) ≤ c
∑
n

ε2n <∞.

Problem 3 (total 10 Credits)

The gradient-field of a function J(θ) is shown in Figure 1. Apply a steepest descent algorithm for

Figure 1: Gradient-field of J(θ)

finding the minimum of J(θ).



(a). [5 Credits] If you choose point (−15,−10) as initial point. Argue with Figure 1 that the
algorithm will not converge to (0, 0).

(b). [5 Credits] For the same ODE as in part (a) discuss the nature of point (0, 0) (stable,
asymptotically stable, or unstable).

Answer Problem 3: (a) The graph shows the gradients, so the negative gradients point in
opposite direction. Starting in (−15,−10) the ODE will be drawn towards a point near (−13, 0).
Hence, the ODE will not reach (0, 0).

(b) The point is stable as the gradient is zero in this point. The point is not asymptotically
stable as the gradient around (0, 0) is (almost) zero. [The ODE will not move in the neighborhood
of (0, 0)]

Problem 4 (total 50 Credits)

Let X = Xθ ∼ Exp(θ−1) for θ > 0 (whatever convenient we write X or Xθ). The pdf of X is

fθ(x) =
1

θ
e−x/θ, x ≥ 0.

In the sequel you may use that for any power p ∈ N, E
[
Xp
θ ] = p! θp. Let J(θ) = E

[
X2
θ

]
. In this

problem you are going to analyse unbiased estimators of J ′(θ) = d
dθJ(θ).

(a). [15 Credits] Define

D = Dθ =
2X2

θ

θ
.

(i). Derive that D is the IPA estimator of J ′(θ), assuming that the IPA interchange con-
dition hold, i.e.,

d

dθ
E
[
X2
θ

]
= E

[ d
dθ
X2
θ

]
. (2)

(ii). Show that D is unbiased.

(iii). Compute the variance of D (answer is 80θ2).

(iv). Argue that the interchange condition (2) hold.

(b). [15 Credits] Define

D = Dθ =
X2
θ

θ

(Xθ

θ
− 1
)
.

(i). Derive that D is the SFM estimator of J ′(θ), assuming that the SFM interchange
condition hold, i.e.,

d

dθ

∫
x2fθ(x) dx =

∫
x2

d

dθ
fθ(x) dx. (3)

(ii). Show that D is unbiased.

(iii). Compute the variance of D (answer is 448θ2). You may use that Cov
(
X3/θ2, X2/θ

)
=

108θ2.

(iv). Argue that the interchange condition (3) hold.



(c). [15 Credits] Define

D = Dθ =
1

θ

(
(Xθ + Yθ)

2 −X2
θ

)
,

where Y = Yθ is independent of Xθ, and also Exp(θ−1) distributed.

(i). Derive that D is the MVD estimator of J ′(θ). Namely, assume that the interchange
condition (3) hold, then derive that

d

dθ
fθ(x) =

1

θ

(
gθ(x)− fθ(x)

)
,

with gθ(x) the pdf of Gamma(2, θ−1), i.e.,

gθ(x) =
x

θ2
e−x/θ, x ≥ 0.

(ii). Show that D is unbiased. Hint: (X+Y )2 = X2+2XY +Y 2 and X,Y are independent.

(iii). Compute the variance of D (answer is 48θ2). You may use that

E
[
(X + Y )4

]
= 120θ4; and Cov

(
(X + Y )2, X2

)
= 28θ4.

(d). [5 Credits] What is your conclusion?

Answers Problem 4:

(a). Note J(θ) = E[h(Xθ)] with h(x) = x2, and by the inverse transform method, Xθ = −θ ln(1−
U where U is uniform (0,1):

Fθ(x) = 1− e−x/θ = u ⇔ x = −θ ln(1− u).

Thus by the chain rule:

∂

∂θ
h(Xθ) = h′(Xθ)X

′
θ = −2Xθ ln(1− U) =

−2Xθθ ln(1− U)

θ
=

2X2
θ

θ
.

The interchange (2) is

J ′(θ) =
∂

∂θ
E[h(Xθ)] = E

[ ∂
∂θ
h(Xθ)

]
,

which shows the IPA estimator

Dθ =
∂

∂θ
h(Xθ) =

2X2
θ

θ
.

To show unbiasedness for J ′(θ), we use E
[
Xp
θ ] = p! θp. Firstly,

J(θ) = E[X2
θ ] = 2θ2 ⇒ J ′(θ) = 4θ.

Next,

E[Dθ] =
2

θ
E[X2

θ ] =
2

θ
2!θ2 = 4θ = J ′(θ).



For the variance, compute the second moment:

E[D2
θ ] =

4

θ2
E[X4

θ ] =
4

θ2
4!θ4 = 96θ2.

Thus
Var[Dθ] = E[D2

θ ]−
(
E[Dθ]

)2
= 96θ2 − 16θ2 = 80θ2.

Interchange is allowed because (i) Xθ is differentiable (in θ), (ii) h(x) is differentiable (in x),
and (iii) Y (θ)

.
= h(X(θ)) is almost surely Lipschitz continuous on any interval (a, b) ⊂ (0,∞).

To show condition (iii):

sup
θ∈(a,b)

|Y ′(θ)| = sup
θ∈(a,b)

2X2
θ

θ

= sup
θ∈(a,b)

2θ2

θ

(
ln(1− U)

)2
= 2b

(
ln(1− U)

)2
<∞.

The Lipschitz modulus is

K = 2b
(

ln(1− U)
)2

=
(
−
√

2b ln(1− U)︸ ︷︷ ︸
L∼Exp(1/

√
2b)

)2 ⇒ E[K] <∞.

(b). The pdf of Xθ is fθ(x) = 1
θ e
−x/θ, which gives the score function:

S(θ, x)
.
=

∂

∂θ
ln fθ(x) =

∂

∂θ

(
− ln θ − x

θ

)
= −1

θ
+
x

θ2
.

Work out the interchange (3):

J ′(θ) =
∂

∂θ
E[X2

θ ] =
∂

∂θ

∫
x2fθ(x) dx =

∫
x2

∂

∂θ
fθ(x) dx =

∫
x2

∂
∂θfθ(x)

fθ(x)
fθ(x) dx

=

∫
x2

∂

∂θ

(
ln fθ(x)

)
fθ(x) dx =

∫
x2s(θ, x) fθ(x) dx = E

[
X2
θ S(θ,Xθ)

]
.

This shows the SFM estimator

Dθ = X2
θ S(θ,Xθ) = X2

θ

(
− 1

θ
+
Xθ

θ2
)

=
X2
θ

θ

(Xθ

θ
− 1
)

=
X3
θ

θ2
−
X2
θ

θ
.

Recall that J ′(θ) = 4θ. Then

E[Dθ] = E
[X3

θ

θ2
−
X2
θ

θ

]
=

3!θ3

θ2
− 2!θ2

θ
= 6θ − 2θ = 4θ.

The variance:

Var[Dθ] = Var
[X3

θ

θ2
−
X2
θ

θ

]
= Var

[X3
θ

θ2
]

+Var
[X2

θ

θ

]
− 2Cov

(X3
θ

θ2
,
X2
θ

θ

)
.

Work out the three terms:

Var
[X3

θ

θ2
]

=
1

θ4
(
6!θ6 − (3!θ3)2

)
= 720θ2 − 36θ2 = 684θ2

Var
[X2

θ

θ

]
=

1

θ2
(
4!θ4 − (2!θ2)2

)
= 24θ2 − 4θ2 = 20θ2

2Cov
(X3

θ

θ2
,
X2
θ

θ

)
= 216θ2



Which gives
Var[Dθ] = 684θ2 + 20θ2 − 216θ2 = 488θ2.

The nontrivial interchange condition is∫
x2 sup

θ∈(a,b)

∣∣ ∂
∂θ
fθ(x)

∣∣ dx <∞.
Work out,

∂

∂θ
fθ(x) =

( x
θ3
− 1

θ2
)
e−x/θ =

e−x/θ

θ2
(x
θ
− 1
)
. (4)

Thus, for a < θ < b and x > a is

e−x/θ

θ2
≤ e−x/b

a2
; and

∣∣x
θ
− 1
∣∣ ≤ x

a
.

Hence, ∫ ∞
a

x2 sup
θ∈(a,b)

∣∣ ∂
∂θ
fθ(x)

∣∣ dx ≤ ∫ ∞
a

x3

a3
e−x/b dx <∞.

(c). Differentiate fθ(x) = e−x/θ/θ, see (4):

∂

∂θ
fθ(x) =

1

θ

( x

θ2
e−x/θ︸ ︷︷ ︸

=gθ(x)
L
=Gamma(2,1/θ)

− 1

θ
e−x/θ︸ ︷︷ ︸

=fθ(x)
L
=Exp(1/θ)

)
.

Because the Gamma(2, α) is the sum of two iid Exp(α) random variables, we let Xθ, Yθ
L∼

Exp(1/θ) independent, and Xθ + Yθ
L∼ Gamma(2, 1/θ). This gives that

J ′(θ) =
∂

∂θ
E[X2

θ ] =
∂

∂θ

∫
x2fθ(x) dx =

∫
x2

∂

∂θ
fθ(x) dx

=

∫
x2

1

θ

(
gθ(x)− fθ(x)

)
dx =

1

θ

( ∫
x2gθ(x) dx−

∫
x2fθ(x) dx

)
=

1

θ

(
E
[
(Xθ + Yθ)

2
]
−E

[
X2
θ

])
=

1

θ
E
([

(Xθ + Yθ)
2
]
−X2

θ

)]
.

This shows the MVD estimator

Dθ =
1

θ

(
(Xθ + Yθ)

2 −X2
θ

)
.

For unbiasedness, recall that J ′(θ) = 4θ. Then

θE[Dθ] = E
[
(Xθ + Yθ)

2 −X2
θ

]
E
[
(Xθ + Yθ)

2
]
−E

[
X2
θ

]
,

with

E
[
(Xθ + Yθ)

2
]

= E
[
X2
θ + Y 2

θ + 2XθYθ
]

= E[X2
θ ] +E[Y 2

θ ] + 2E[Xθ]E[Yθ]

= 2θ2 + 2θ2 + 2θ2 = 6θ2

E
[
X2
θ

]
= 2θ2.



Thus E[Dθ] = 6θ − 2θ = 4θ. The variance:

θ2Var[Dθ] = Var
[
(Xθ+Yθ)

2−X2
θ

]
= Var

[
(Xθ+Yθ)

2
]
+Var

[
X2
θ

]
−2Cov

(
(Xθ+Yθ)

2, X2
θ

)
.

Work out the three terms:

Var
[
(Xθ + Yθ)

2
]

= E
[
(Xθ + Yθ)

4
]
−
(
E
[
(Xθ + Yθ)

2
])2

= 120θ4 − 36θ4 = 84θ4

Var
[
X2
θ

]
== E

[
X4
θ

]
−
(
E
[
X2
θ

])2
= 4!θ4 − (2!θ2)2 = 20θ4

2Cov
(
(Xθ + Yθ)

2, X2
θ

)
= 56θ4.

Which gives
Var[Dθ] = 84θ2 + 20θ2 − 56θ2 = 48θ2.

(d). The conclusion is that we see here three unbiased estimators of J ′(θ), but their variances
differ quite a bit. In fact,

Var
[
DMVD
θ

]
≤ Var

[
DIPA
θ

]
≤ Var

[
DSFM
θ

]
.

On the other hand, when computing these estimator by simulation, the MVD estimator takes
double computation times.


