
Exam Operations Research

Date: April 1, 2022
Time: 15:30 - 17:45

Points per exercise:

• Exercise 1 has a total of 30 points (a(10), b(5), c(5) and d(10)).

• Exercise 2 has a total of 15 points.

• Exercise 3 has a total of 15 points (a(10) and b(5)).

• Exercise 4 has a total of 20 points (a(10) and b(10)).

• Exercise 5 has a total of 10 points.

Thus in total 90 points can be obtained. The exam grade is determined as follows:

Exam grade = 1 +
total number of obtained points

10
.

• Calculator is allowed.

• This exam consists of 6 pages, including this one.

• The duration of this exam is 2 hours and 15 minutes.

• Students who have obtained permission for extra time may use an additional 30 minutes.
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Exercise 1

Consider the following LP which is referred to as the “primal LP”.

max z = 3x1 − 2x2 + 4x3

s.t. 2x1 − x2 + 3x3 ≤ 20

−x1 + x2 − 3x3 ≥ 10

x1, x2, x3 ≥ 0

(a) [10 points] Determine the dual of this LP.

(b) [5 points] The primal LP has been solved by the simplex method resulting in the following final tableau
where s1 is the slack variable introduced in the first constraint, s2 is the surplus variable introduced in
the second constraint and r2 is the artificial variable introduced in the second constraint:

Basic z x1 x2 x3 s1 s2 r2 value

z 1 0 0 2 1 1 −1 10

x1 0 1 0 0 1 −1 1 30
x2 0 0 1 −3 1 −2 2 40

Determine the optimal solution of the primal LP and optimal objective value. Determine also the optimal
solution of the dual LP and optimal dual objective value.

(c) [5 points] Suppose the right hand sides of both constraints are changed to 30 (instead of respectively
20 and 10). Determine the optimal solution and optimal objective value of this modified LP.

(d) [10 points] Now the right hand sides of the constraints are not changed (thus they are respectively 20
and 10 as in the primal LP) but instead the coefficient of variable x1 in the objective function is changed
from 3 to 1. Adjust the simplex tableau accordingly and apply the simplex method to determine the
optimal solution and optimal objective value of this modified LP. It will require one pivot step to find
the new optimal solution. Also explain why it follows from the simplex tableau which you obtain after
one pivot step that the corresponding solution is the optimal solution of the modified LP.
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Solution Exercise 1:

(a) The dual LP is:

min w = 20y1 + 10y2

s.t. 2y1 − y2 ≥ 3

−y1 + y2 ≥ −2

3y1 − 3y2 ≥ 4

y1 ≥ 0, y2 ≤ 0

(b) The optimal solution of the primal LP is x∗1 = 30, x∗2 = 40, x∗3 = 0 and optimal objective value z∗ = 10.
The optimal solution of the dual LP is y∗1 = 1, y∗2 = −1 with optimal dual objective value w∗ = 10.

(c) The change in the right hand side of the first constraint is ∆1 = 30 − 20 = 10 and in the second
constraint is ∆2 = 30 − 10 = 20 . Thus as corresponding basic solution of the modified LP we obtain
x∗1 = 30+∆1 +∆2 = 60 and x∗2 = 40+∆1 +2∆2 = 90. For the nonbasic variable x3 we still have x∗3 = 0.
Notice that this solution is feasible and thus it is optimal for the modified LP. It follows that the new
optimal objective value is z∗ = 10 + ∆1 −∆2 = 0.

(d) Since the coefficient of variable x1 in the objective function is decreased by 2 it follows that in the simplex
tableau the coefficient of x1 in the z -row increases by 2. This gives the following simplex tableau:

Basic z x1 x2 x3 s1 s2 r2 value

z 1 2 0 2 1 1 −1 10

x1 0 1 0 0 1 −1 1 30
x2 0 0 1 −3 1 −2 2 40

Since x1 is basic variable the coefficient of x1 in the z-row should become 0 which is possible by
subtracting two times the x1-row from the z-row resulting in the following tableau:

Basic z x1 x2 x3 s1 s2 r2 value

z 1 0 0 2 −1 3 −3 −50

x1 0 1 0 0 1 −1 1 30
x2 0 0 1 −3 1 −2 2 40

Since the coefficient of s1 in the z-row is now negative this solution is not optimal and s1 should
become basic variable. Then x1 has to leave the basis by the ratio test since 30

1 < 40
1 . Performing the

corresponding pivot step gives the following simplex tableau:

Basic z x1 x2 x3 s1 s2 r2 value

z 1 1 0 2 0 2 −2 −20

s1 0 1 0 0 1 −1 1 30
x2 0 −1 1 −3 0 −1 1 10

The corresponding solution is optimal since all coefficients (except for the artificial variable r2) in the
z-row are now nonnegative. Thus an optimal solution of the modified LP is: x∗1 = 0, x∗2 = 10, x∗3 = 0
with optimal objective value z∗ = −20.
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Exercise 2

In some national soccer competition there are seven postponed matches and there is an upcoming weekend
designated to play postponed matches. The objective of the competition manager is that as many as possible
of these postponed matches will be played during that weekend. However for several reasons there are
restrictions on these matches to be played in that weekend. The restrictions for that weekend are as follows:

• If matches 1 and 4 are both played then match 2 can not be played.

• If match 6 is not played then match 5 has to be played.

• At least two of the three matches 3, 4 and 7 have to be played.

• If match 3 is played then matches 1 and 6 can not be played.

• If match 7 is played then at most one of the three matches 2, 4 and 5 can be played.

(a) [15 points] Formulate the problem of maximizing the number of postponed matches to be played during
that weekend under the given restrictions as an integer linear program (ILP). Explain all variables and
constraints in your ILP formulation of this problem.

Solution Exercise 2:
Define binary variables xi for i = 1, 2, . . . , 7 where xi = 1 if match i is scheduled to be played in that week-
end and xi = 0 otherwise. Using these decision variables the problem can be formulated as the following ILP:

max z =

7∑
i=1

xi

s.t. x1 + x2 + x4 ≤ 2 restriction 1

x5 + x6 ≥ 1 restriction 2

x3 + x4 + x7 ≥ 2 restriction 3

x1 + x3 ≤ 1 part restriction 4

x3 + x6 ≤ 1 part restriction 4

x2 + x4 + x5 ≤ 1 + 2(1− x7) restriction 5

All variables xi ∈ {0, 1}
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Exercise 3

Consider the following ILP (Integer Linear Program) with three nonnegative integer decision variables
x1, x2, x3.

max z = 5x1 + 4x2 + 5x3

s.t. 4x1 + 3x2 + 2x3 ≤ 13

2x1 + 3x2 + 4x3 ≤ 11

x1, x2, x3 ≥ 0

x1, x2, x3 integer

The LP relaxation of the ILP has been solved by the simplex method resulting in the following final simplex
tableau.

Basic z x1 x2 x3 s1 s2 value

z 1 0 1 0 5
6

5
6 20

x1 0 1 0.50 0 1
3 −1

6 2.50
x3 0 0 0.50 1 −1

6
1
3 1.50

The solution obtained from this simplex tableau is not integer and thus not feasible for the original ILP.
Branching on decision variable x1 results in two subproblems. For subproblem 1 the constraint x1 ≤ 2 is
added to the problem and for subproblem 2 the constraint x1 ≥ 3 is added to the problem.

(a) [10 points] First write down the LP relaxation of subproblem 1 in standard form. Next solve this
problem by applying the dual simplex method.
Instruction: To reduce computation time make use of the above given final simplex tableau for the LP
relaxation of the original ILP.

(b) [5 points] The LP relaxation of subproblem 2 has also been solved resulting in a solution where the
decision variables xi have values x1 = 3, x2 = 0 and x3 = 0.50. Determine an optimal solution of the
original ILP by the branch-and-bound method. Explain why that solution is optimal for the original
ILP.
If in (a) you were not able to solve the LP relaxation of subproblem 1 you may assume that x1 = 1, x2 =
3, x3 = 0 is an optimal solution of that problem to continue the branch-and-bound method.

5



Solution exercise 3:

(a) The LP relaxation of subproblem 1 in standard form is as follows:

max z = 5x1 + 4x2 + 5x3

s.t. 4x1 + 3x2 + 2x3 + s1 = 13

2x1 + 3x2 + 4x3 + +s2 = 11

x1 + s3 = 2

x1, x2, x3 ≥ 0

In this standard form s1, s2 and s3 are slack variables. The extra equation x1 + s3 = 2 is added to the
final simplex tableau given in the exercise and a column for the new slack variable s3 is added. This
give the following tableau:

Basic z x1 x2 x3 s1 s2 s3 value

z 1 0 1 0 5
6

5
6 0 20

x1 0 1 0.50 0 1
3 −1

6 0 2.50
x3 0 0 0.50 1 −1

6
1
3 0 1.50

s3 0 1 0 0 0 0 1 2

To get the column of basic variable x1 correct the x1-row is subtracted from the s3-row resulting in the
following tableau:

Basic z x1 x2 x3 s1 s2 s3 value

z 1 0 1 0 5
6

5
6 0 20

x1 0 1 0.50 0 1
3 −1

6 0 2.50
x3 0 0 0.50 1 −1

6
1
3 0 1.50

s3 0 0 −0.50 0 −1
3

1
6 1 −0.50

Since the value of s3 is now negative s3 should leave the basis and according to the ratio test for the
dual simplex method variable x2 then enters the basis. Performing the corresponding pivot step results
in the following tableau:

Basic z x1 x2 x3 s1 s2 s3 value

z 1 0 0 0 1
6

7
6 2 19

x1 0 1 0 0 0 0 1 2
x3 0 0 0 1 −0.50 0.50 1 1
x2 0 0 1 0 2

3 −1
3 −2 1

The corresponding solution x1 = 2, x2 = 1, x3 = 1 is optimal with value z = 19.

(b) The solution x1 = 2, x2 = 1, x3 = 1 which was obtained in (a) is integer and thus feasible for the
original ILP. Thus the corresponding objective value z = 19 is a lower bound for the optimal objectuive
value of the original ILP. The given optimal solution x1 = 3, x2 = 0 and x3 = 0.50 of the LP relaxation
of subproblem 2 has value z = 5 × 3 + 4 × 0 + 5 × 0.50 = 17.5. Hence subproblem 2 can not have a
solution with value better than 17.5 (and thus also not better than 17 since the value of a feasible integer
solution is integer). Hence the optimal solution x1 = 2, x2 = 1, x3 = 1 for subproblem 1 with objective
value z = 19 is optimal for the original ILP since subproblem 2 can not have a better solution.

Remark: If the optimal solution for (a) was not obtained and therefore instead the solution x1 = 1, x2 =
3, x3 = 0 for subproblem 1 is assumed to be optimal it can similarly be concluded that that solution
would be optimal for the original ILP since the objective value for that solution is z = 17 and then it is
still not possible that subproblem 2 contains a better solution.
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Figure 1: non-directed graph exercise 4a

Figure 2: directed graph exercise 4b

Exercise 4

(a) [10 points] Consider the problem of finding a minimum weight spanning tree in the non-directed graph
of Figure 1 (where edge weights have been indicated) using Prim’s algorithm starting from the tree
containing only node A. Make clear in which order the edges are picked by the algorithm and draw
the minimum weight spanning tree which is finally obtained. Explain the order in which edges to be
included in the minimum spanning tree are picked by this algorithm.

(b) [10 points] Consider the maximum flow problem shown in the directed graph of Figure 2 where the
arc capacities are indicated by the numbers near the arcs.
Let the current flow f (which is feasible but not maximal) be as follows:
fsa = 6, fsb = 8, fab = 1, fac = 3, fad = 2, fbd = 5, fbe = 4, fct = 5, fdc = 2, fdt = 5, fed = 0, fet = 4
and no flow on other arcs. Draw the residual graph Df corresponding to this flow f . Continue from this
residual graph the Ford-Fulkerson algorithm to determine a maximum flow from source node s to sink
node t. State the value of the flow and show that it is maximal by providing an s-t cut of the same
value.
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Solution exercise 4:

(a) Prim’s algorithm adds an edge of lowest weight under the condition that the edge should be connected to
the existing tree and there is no cycle formed by adding that edge. Applying this algorithm the following
edges are added in the following order: {A,C}, {C,D}, {D,F}, {F, I}, {F,G}, {D,E}, {G, J}, {H, I}, {A,B}.
The resulting minimum spanning tree is then as follows:

(b) The residual graph for the given flow is as follows:

An augmenting path in the above residual graph is: s → a → b → e → d → c → t on which 2 units of
extra flow can be pushed. Pushing this extra flow of 2 units will remove the arc from a to b in the next
residual graph. It is easily seen that in that next residual graph there will be no longer a path from s to
t because there are no arcs which leave the subset {s, a} of nodes. Thus the resulting flow after pushing
2 extra units on the augmenting path should be maximal. This resulting flow is:
fsa = 8, fsb = 8, fab = 3, fac = 3, fad = 2, fbd = 5, fbe = 6, fct = 7, fdc = 4, fdt = 5, fed = 2, fet = 4
and no flow on other arcs having value 16.

To show that this is indeed a maximal flow an s− t cut in the original graph of the same total capacity
of 16 should be provided. This is the cut consisting of the arcs {(s, b), (a, b), (a, c), (a, d)} which indeed
has a total capacity of 8 + 3 + 3 + 2 = 16. This minimum cut is the cut between the nodes {s, a} and
the nodes {b, c, d, e, t}.
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Figure 3: acyclic directed graph exercise 5a

Exercise 5

Consider the acyclic directed graph of Figure 3 with lengths of the arcs as indicated in the graph.

(a) [10 points]. Apply dynamic programming to determine the longest path from node A to node J in
this directed graph. Define an appropriate value function and use backward recursion to compute for
all states the function value. Determine the length of the longest path and make clear which path is the
longest path you have obtained.

Solution exercise 5:
Because the directed graph is acyclic we can number the nodes in the graph such that there are only forward
arcs with respect to that numbering. After such numbering of the nodes backward recursion can be applied
using the numbering of the nodes. Such a numbering which is applicable for backward recursion is A = 1,
B = 2, D = 3, E = 4, C = 5, H = 6, F = 7, G = 8, I = 9, J = 10.
Define the value function f(i) to be the length of the longest path from node numbered i to destination
node J = 10. Initialize f(J) = f(10) = 0 and compute the other function values in backward order by the
recursion f(i) = maxj:(i,j)∈A[w(i, j)+f(j)]. Then it follows consecutively (doing calculations in reverse order
of the numbering of the nodes) that f(I) = 4, f(G) = 6, f(F ) = 13, f(H) = 16, f(C) = 20, f(E) = 10,
f(D) = 22, f(B) = 24, f(A) = 30.
Backtracking we obtain as longest path the path A→ B → H → F → G→ I → J . It is easily checked that
the length of this path is indeed 30 corresponding with the function value f(A).
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