
Exam Operations Research

Date: July 10, 2020
Time: 10:00 - 12:15

Points per exercise:

• Exercise 1 has a total of 30 points (a(10), b(5) , c(5) and d(10)).

• Exercise 2 has a total of 15 points.

• Exercise 3 has a total of 20 points (a(5), b(5) and c(10)).

• Exercise 4 has a total of 10 points.

• Exercise 5 has a total of 15 points (a(10) and b(5)).

Thus in total 90 points can be obtained. The exam grade is determined as follows:

Exam grade = 1 +
total number of obtained points

10
.

• Calculator is allowed.

• This exam consists of 4 pages, including this one.

• The duration of this exam is 2 hours and 15 minutes. When you finish working you notify the host
of your meeting. Within 15 minutes after you finish working you have to upload the scanned pdf file
in Canvas in the assignment for the July 10 resit exam. After uploading the pdf file you notify the
host again.

• Students who have obtained permission for extra time may use an additional 30 minutes.
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Exercise 1

Consider the following LP which is referred to as the “primal LP”.

min w = 4x1 − x2 + 3x3 + 2x4

s.t. x1 − x2 + x3 + 3x4 ≥ 20

2x1 + x2 + x3 + x4 = 16

x1, x2, x3, x4 ≥ 0

(a) [10 points] Determine the dual of this LP.

(b) [5 points] The primal LP has been solved by the simplex method resulting in the following final simplex
tableau where s1 is the surplus variable from the first constraint, r1 is the artificial variable from the
first constraint and r2 is the artificial variable from the second constraint:

Basic w x1 x2 x3 x4 s1 r1 r2 value

w 1 −3.75 0 −2.50 0 −0.75 0.75 −0.25 11.00

x4 0 0.75 0 0.50 1.00 −0.25 0.25 0.25 9.00
x2 0 1.25 1.00 0.50 0 0.25 −0.25 0.75 7.00

Determine the optimal solution of the primal LP and optimal objective value. Determine also the optimal
solution of the dual LP and optimal dual objective function.

(c) [5 points] The right hand side of the second constraint is changed to 12 instead of 16. Determine the
optimal solution of this modified primal LP and the corresponding optimal objective value.
Instruction: This optimal solution can be found by sensitivity analysis using the above simplex tableau
without doing any pivot step.

(d) [10 points] Now the right hand side of the second contraint is not changed (thus it is 16 as in the
original LP problem), but the coefficent in the objective function before x4 is changed to -2 instead
of 2. Adjust the simplex tableau accordingly and apply the simplex method to determine the optimal
solution and optimal objective value of this modified LP. It will require one pivot step to find the new
optimal solution. Also explain why it follows from the simplex tableau which you obtain after one pivot
step that the corresponding solution is the optimal solution of the modified LP.
Instruction: Since the primal solution you have determined in exercise 1b is still feasible (but it will
be no longer optimal) you can leave out the columns of the two artificial variables in your calculations
to spare some time. Moreover, if you do the calculations correctly then in the final simplex tableau all
values will be integers.

Solution exercise 1:

(a) The dual LP is:

max z = 20y1 + 16y2

s.t. y1 + 2y2 ≤ 4

−y1 + y2 ≤ −1

y1 + y2 ≤ 3

3y1 + y2 ≤ 2

y1 ≥ 0, y2 unrestricted

(b) The optimal solution of the primal LP is x∗1 = 0, x∗2 = 7, x∗3 = 0, x∗4 = 9 and optimal objective value
w∗ = 11. The optimal solution of the dual LP is y∗1 = 0.75, y∗2 = −0.25 with optimal dual objective
value z∗ = 11.
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(c) The change in the right hand side of the second constraint is ∆2 = 12 − 16 = −4. The new optimal
solution will have the same basic variables since no pivot step is needed.
In this new optimal solution x∗4 = 9+0.25∆2 = 8 and x∗2 = 7+0.75∆2 = 4 and for the nonbasic variables
we still have x∗1 = x∗3 = 0. The new optimal objective value is w∗ = 11 + (−0.25)∆2 = 12.

(d) The modified simplex tableau omitting the columns of the artificial variables is:

Basic w x1 x2 x3 x4 s1 value

w 1 −3.75 0 −2.50 4.00 −0.75 11.00

x4 0 0.75 0 0.50 1.00 −0.25 9.00
x2 0 1.25 1.00 0.50 0 0.25 7.00

Subtracting 4 times the x4 row from the w row to get a zero coefficient in the objective row for the
nonbasic variable x4 we obtain:

Basic w x1 x2 x3 x4 s1 value

w 1 −6.75 0 −4.50 0 0.25 −25.00

x4 0 0.75 0 0.50 1.00 −0.25 9.00
x2 0 1.25 1.00 0.50 0 0.25 7.00

Now the coefficient before s1 in the objective row has become positive. So for the pivot step s1 will enter
the basis and then x2 (having positive coefficient in the s1 column) will leave the basis. Then we obtain
the following tableau:

Basic w x1 x2 x3 x4 s1 value

w 1 −8.00 −1.00 −5.00 0 0 −32.00

x4 0 2.00 1.00 1.00 1.00 0 16.00
s1 0 5.00 4.00 2.00 0 1.00 28.00

From this tableau it follows that the optimal solution of the modified LP is x∗1 = x∗2 = x∗3 = 0, x∗4 = 16
with optimal objective value w∗ = −32.
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Exercise 2

There are 7 files (i = 1, 2, . . . , 7) which have to be stored on USB sticks. For storing these files there are two
USB sticks available with storage capacities of respectively 32 MB and 16 MB. The sizes of the 7 files are
respectively 6 MB, 5 MB, 3 MB, 9 MB, 4 MB, 6 MB and 11 MB. Each file should be stored at one of the
USB sticks. Moreover, because of a security issue the files numbered 2 and 7 may not be stored on the same
USB stick.

(a) [15 points] Formulate an integer linear program for this problem. Formulate the objective function
such that if there exist feasible solution(s) that then the total amount of MB’s which are stored on the
stick with 32 MB capacity is minimized. Explain the meaning of all variables and constraints you have
in your formulation. Pay attention that the formulation (besides that you may use integer or binary
variables) has to be linear.

Solution exercise 2:
Define binary variables xi for i = 1, 2, . . . , 7 where xi = 1 if file i is stored on the 32 MB stick and xi = 0 if
file i is stored on the 16 MB stick. Let y1 be the total amount of MB’s stored on the 32 MB stick and let
y2 be the total amount of MB’s stored on the 16 MB stick. Using these decision variables we can formulate
the problem as follows:

min w = y1

s.t. y1 = 6x1 + 5x2 + 3x3 + 9x4 + 4x5 + 6x6 + 11x7

y1 + y2 = 44 (this is the total amount of MB’s of all 7 files)

y1 ≤ 32

y2 ≤ 16

x2 + x7 = 1 (this constraint to make sure that file 2 and file 7 are stored on different sticks)

All variables xi ∈ {0, 1}, y1 ≥ 0, y2 ≥ 0
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Exercise 3

Consider the following problem. You are packing your suitcase for a journey and need to decide what items
to bring. You have 4 items (just one of each); each has a certain value to you, and a certain weight:

weight (kg) 4 7 3 5
value 10 17 8 14

You do not want to have more than 10 kg of weight in the suitcase. The problem is to choose under that
weight restriction which items should be put into the suitcase maximizing the total value of those items.

(a) [5 points] Formulate an integer linear program for this problem.

(b) [5 points] Determine the unique optimal solution of the LP relaxation of this problem. Also determine
the corresponding optimal objective value.

(c) [10 points] Solve the ILP from (a) by applying the branch-and-bound method. Clearly indicate in
which order you compute the nodes of the search tree and where you prune the search tree. Also indicate
which pruning criterion you use when you prune.

Solution exercise 3:

(a)

max z = 10x1 + 17x2 + 8x3 + 14x4

s.t. 4x1 + 7x2 + 3x3 + 5x4 ≤ 10

x1, x2, x3, x4 ∈ {0, 1}

(b) Since 14
5 > 8

3 > 10
4 > 17

7 it follows for this binary knapsack problem that the LP relaxation has optimal
solution x1 = 1

2 , x2 = 0, x3 = 1, x4 = 1 with z∗ = 27.

(c) From (b) we already have the upperbound z0 = 27 for starting node 0. From starting node 0 we branch
on variable x1.
Put x1 = 0 for subproblem 1. Then the LP relaxation has optimal solution x1 = 0, x2 = 2

7 , x3 = 1, x4 = 1
with z1 = 266

7 . Branch on variable x2 from node 1. Putting x1 = 0, x2 = 0 for subproblem 1.1 the LP
relaxation has optimal solution x1 = 0, x2 = 0, x3 = 1, x4 = 1 with z1.1 = 22. This gives also an lower
bound for the original problem since this LP relaxation solution is feasible.
Put x1 = 0, x2 = 1 for subproblem 1.2. Then the LP relaxation has optimal solution x1 = 0, x2 = 1,
x3 = 0, x4 = 3

5 yielding upper bound z1.2 = 251
5 . Branch on variable x4 from node 1.2.

Putting x1 = 0, x2 = 1, x4 = 0 for node 1.2.1 yields the solution x1 = 0, x2 = 1, x3 = 1, x4 = 0 with
value z1.2.1 = 25. This solution gives a new best lower bound.
Putting x1 = 0, x2 = 1, x4 = 1 for node 1.2.2 gives no feasible solutions (already too much weight is
used) and thus we can prune this branch. It remains to consider subproblem 2 by putting x1 = 1. Then
the LP relaxation has optimal solution x1 = 1, x2 = 0, x3 = 1

3 , x4 = 1 with z2 = 262
3 . Branch on x3 from

node 2. Putting x1 = 1, x3 = 1 gives only x1 = 1, x2 = 0, x3 = 1, x4 = 0 with value z = 18 as optimal
solution which is worse than the lowerbound. We can prune.
It now only remains to consider node 2.1 by putting x1 = 1, x3 = 0. Then the LP relaxation has optimal
solution x1 = 1, x2 = 1

7 , x3 = 0 , x4 = 1 yielding upperbound z2.1 = 263
7 . Branch on x2 from node 2.1.

Putting x2 = 1 gives no feasible solutions (too much weight used) . It only remains to consider node
2.1.1 by putting x1 = 1, x2 = 0, x3 = 0. Then the LP relaxation gives x1 = 1, x2 = 0, x3 = 0, x4 = 1
with value z2.1.1 = 24. This is feasible for the original problem, but the value of 24 is worse than the
lower bound 25 we have obtained before.
The conclusion is that x1 = 0, x2 = 1, x3 = 1, x4 = 0 with value z∗ = 25 is the optimal solution of the
binary knapsack problem.
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Exercise 4

(a) [10 points] Consider the problem of finding a minimum weight spanning tree in the non-directed graph
below (where edge weights have been indicated) using Prim’s algorithm choosing node A as initial tree.
Make clear in which order the edges are picked by the algorithm and draw the minimum weight spanning
tree which is finally obtained. Explain your answer briefly.

Solutions exercise 4.
Prim’s algorithm adds an edge of lowest weight under the condition that the edge should be connected to
the existing tree and there is no cycle formed by adding that edge. Applying this algorithm the following
edges are added in the following order:
{A,C}, {C,F}, {A,D}, {D,E}, {E,G}, {G, J}, {G, I}, {B,E}, {I,H}.
The resulting minimal spanning tree is then as follows:
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Exercise 5

Consider the directed graph shown below with length of the arcs as indicated.

(a) [10 points]. Apply Dijkstra’s algorithm to determine a shortest path from node A to node J in
this directed graph. It should be clear from your work that you have applied Dijkstra’s algorithm to
determine a shortest path. At the end clearly draw the shortest path which you have found.

(b) [5 points]. The arcs (E,D) and (E,F ) are removed from the directed graph and can no longer be used
on any path between two nodes. In this modified directed graph determine a shortest path from node
A to node J by applying backward recursion. It should be clear from your work that you have applied
backward recursion to determine a shortest path. At the end clearly draw the shortest path which you
have found.

Solution exercise 5:

(a) The calculations from Dijkstra’s algorithm are summarized in the following table where label (x, y) for
a node means that x is the shortest distance from A to the node obtained until the current iteration
and y is the predecessor of the node on that shortest path to the node. Once the label of a node has
become permanent it is no longer written in this table in the following iterations (since it will not
change anymore). If the label is followed by ∗ it means that this label becomes permanent in the current
iteration.

iteration B C D E F G H I J

1 (3, A)∗ (4, A) (7, A)
2 (4, A)∗ (8, B) (6, B)
3 (8, B) (6, B)∗ (7, C)
4 (7, E)∗ (7, C) (10, E) (12, E) (12, E)
5 (7, C)∗ (9, D) (12, E) (12, E)
6 (9, D)∗ (12, E) (12, E)
7 (12, E)∗ (12, E) (15, G)
8 (12, E)∗ (15, G)
9 (15, G)∗

Backtracking from node J we obtain that the corresponding shortest path is: A → B → E → D →
G→ J having total length 15.
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(b) After removing the arcs (E,D) and (E,F ) the directed graph is acyclic and then it is possible to number
the nodes such that for every arc (i, j) in the graph it holds that i < j. Such numbering is for example
A = 1, B = 2, C = 3, D = 4, F = 5, E = 6, G = 7, I = 8, H = 9, J = 10.

Now define the value function f(i) to be the length of the shortest path from node numbered i to
destination node J = 10. Initialize f(10) = 0 and compute the other function values by the backward
recursion f(i) = minj:(i,j)∈A[w(i, j) + f(j)].
Then it follows consecutively (doing calculations in reverse order of the numbering of the nodes) that
f(9) = 5, f(8) = 6, f(7) = 6, f(6) = 10 , f(5) = 12, f(4) = 8, f(3) = 15, f(2) = 13, f(1) = 16.
Backtracking we obtain as shortest path either the path A → B → D → G → J or A → B → E →
G→ J . It is easily seen that the length of these paths are indeed 16 corresponding with the calculated
function value f(1).
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