
Exam Operations Research

Date: June11, 2020
Time: 10:00 - 12:15

Points per exercise:

• Exercise 1 has a total of 25 points (a(10), b(5) and c(10)).

• Exercise 2 has a total of 15 points.

• Exercise 3 has a total of 20 points (a(5), b(5) and c(10)).

• Exercise 4 has a total of 20 points (a(10) and b(10)).

• Exercise 5 has a total of 10 points.

Thus in total 90 points can be obtained. The exam grade is determined as follows:

Exam grade = 1 +
total number of obtained points

10
.

• Calculator is allowed.

• This exam consists of 5 pages, including this one.

• The duration of this exam is 2 hours and 15 minutes. When you finish working you notify the host
of your meeting. Within 15 minutes after you finish working you have to upload the scanned pdf file
in Canvas in the assignment for the June 11 exam. After uploading the pdf file you notify the host
again.

• Students who have obtained permission for extra time may use an additional 30 minutes.
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Exercise 1

Consider the following LP which is referred to as the “primal LP”.

max z = x1 + 3x2 − x3 + x4

s.t. x1 + 2x2 − 2x3 + x4 ≤ 10

x1 + 2x2 + x3 = 20

x1, x2, x3, x4 ≥ 0

(a) [10 points] Determine the dual of this LP.

(b) [5 points] The primal LP has been solved by the simplex method resulting in the following final tableau:

Basic z x1 x2 x3 x4 s1 r1 value

z 1 1 1 0 0 1 1 30

x4 0 3 6 0 1 1 2 50
x3 0 1 2 1 0 0 1 20

Determine the optimal solution of the primal LP and optimal objective value. Determine also the optimal
solution of the dual LP and optimal dual objective function.

(c) [10 points] The extra constraint x4 ≤ 20 is added to the primal LP. Apply the dual simplex method
to determine the optimal solution and optimal objective value of the modified LP.
Instruction: If you do the calculations correctly you get some fractions in the simplex tableau, but all
these fractions are of the form 1

6k with k integer. Moreover, it will require only one pivot step to find
the new optimal solution.
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Solution exercise 1:

(a) The dual LP is:

min w = 10y1 + 20y2

s.t. y1 + y2 ≥ 1

2y1 + 2y2 ≥ 3

−2y1 + y2 ≥ −1

y1 ≥ 1

y1 ≥ 0, y2 unrestricted

(b) The optimal solution of the primal LP is x∗1 = 0, x∗2 = 0, x∗3 = 20, x∗4 = 50 and optimal objective
value z∗ = 30. The optimal solution of the dual LP is y∗1 = 1, y∗2 = 1 with optimal dual objective value
w∗ = 30.

(c) The modified simplex tableau is:

Basic z x1 x2 x3 x4 s1 r1 s2 value

z 1 1 1 0 0 1 1 0 30

x4 0 3 6 0 1 1 2 0 50
x3 0 1 2 1 0 0 1 0 20
s2 0 0 0 0 1 0 0 1 20

Subtracting the x4 row from the s2 row to get the appropriate unit vector in the x4 column we obtain:

Basic z x1 x2 x3 x4 s1 r1 s2 value

z 1 1 1 0 0 1 1 0 30

x4 0 3 6 0 1 1 2 0 50
x3 0 1 2 1 0 0 1 0 20
s2 0 −3 −6 0 0 −1 −2 1 −30

Now we apply one iteration by the dual simplex method. Since s2 is negative in current solution it is
leaving the basis. x2 has the minimal ratio among the variables with negative coefficient in s2 row and
therefore enters the basis. Then we obtain the following tableau:

Basic z x1 x2 x3 x4 s1 r1 s2 value

z 1 1
2 0 0 0 5

6
2
3

1
6 25

x4 0 0 0 0 1 0 0 1 20
x3 0 0 0 1 0 −1

3
1
3

1
3 10

x2 0 1
2 1 0 0 1

6
1
3 −1

6 5

From this tableau it follows that the optimal solution of the modified LP is x∗1 = 0, x∗2 = 5, x∗3 = 10,
x∗4 = 20 with optimal objective value z∗ = 25.
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Exercise 2

There are 3 distribution centers (i = 1, 2, 3) from which a certain product can be transported to fulfill the
weekly demand for this product of 4 towns (j = 1, 2, 3, 4). Town j has a weekly demand for this product of
Dj tons. The cost of transporting the product from distribution center i to town j is Cij per ton. Moreover,
distribution centre i has a startup cost Ai (per week) if this product is transported from distribution centre
i to at least one town. In other words the weekly startup cost Ai is not incurred if there is no transport of
this product from distribution centre i. For each distribution centre i it is not possible to transport more
than Bi tons of the product per week.

(a) [15 points] Formulate the problem of minimizing the total (of transport and startup) costs per week
such that the demand for the product is fulfilled in each town as a mixed integer linear program. Explain
the meaning of all variables and constraints you have in your mixed integer linear program formulation.

Solution exercise 2:
Let xij be the amount of tons transported per week from distribution center i to town j. Let binary variable
yi indicate whether there is any transportation from distribution center i. Let M be some number which is
large enough (M is large enough if it is greater or equal than all Bi). Then we can formulate the problem
as follows:

min w =

3∑
i=1

4∑
j=1

Cijxij +

3∑
i=1

Aiyi

s.t.
3∑

i=1

xij = Dj for j = 1, 2, 3, 4

4∑
j=1

xij ≤ Bi for i = 1, 2, 3

4∑
j=1

xij ≤Myi for i = 1, 2, 3

All variables xij ≥ 0, all variables yi ∈ {0, 1}
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Exercise 3

Consider the following problem. You are packing your suitcase for a journey and need to decide what items
to bring. You have 4 items (just one of each); each has a certain value to you, and a certain weight:

weight (kg) 4 7 8 11
value 8 15 18 24

You do not want to have more than 16 kg of weight in the suitcase. The problem is to choose under that
weight restriction which items should be put into the suitcase maximizing the total value of those items.

(a) [5 points] Formulate an integer linear program for this problem.

(b) [5 points] Determine the unique optimal solution of the LP relaxation of this problem. Also determine
the corresponding optimal objective value.

(c) [10 points] Solve the ILP from (a) by applying the branch-and-bound method. Clearly indicate in
which order you compute the nodes of the search tree and where you prune the search tree. Also indicate
which pruning criterion you use when you prune.

Solution exercise 3:

(a)

max z = 8x1 + 15x2 + 18x3 + 24x4

s.t. 4x1 + 7x2 + 8x3 + 11x4 ≤ 16

x1, x2, x3, x4 ∈ {0, 1}

(b) Since 18
8 > 24

11 > 15
7 > 8

4 it follows for this binary knapsack problem that the LP relaxation has optimal
solution x1 = 0, x2 = 0, x3 = 1, x4 = 8

11 with z∗ = 35 5
11 .

(c) From (b) we already have an upperbound z0 = 35 since the value is always integer for feasible solutions.
From starting node 0 we branch on variable x4.
Put x4 = 0 for subproblem 1. Then the LP relaxation has optimal solution x1 = 1

4 , x2 = 1, x3 = 1, x4 = 0
yielding upper bound z1 = 35. Branch on variable x1 from node 1. Put x1 = 0, x4 = 0 for subproblem
1.1. Then the LP relaxation has optimal solution x1 = 0, x2 = 1, x3 = 1, x4 = 0 yielding upper bound
z1.1 = 33. This is also an lower bound for the original problem since this LP relaxation solution is
feasible.
Put x1 = 1, x4 = 0 for subproblem 1.2. Then the LP relaxation has optimal solution x1 = 1, x2 = 4

7 ,
x3 = 1, x4 = 0 yielding upper bound z1.2 = 345

7 . Branch on variable x2 from node 1.2.
Putting x1 = 1, x2 = 0, x4 = 0 for node 1.2.1 yields the solution x1 = 1, x2 = 0, x3 = 1, x4 = 0 with
value z1.2.1 = 26. This solution is worse than the earlier obtained lowerbound 33 from node 1.1.
Putting x1 = 1, x2 = 1, x4 = 0 for node 1.2.2 gives x1 = 1, x2 = 1, x3 = 0 , x4 = 0 with value 23 as
remaining feasible solution.
Therefore prune and it remains only to consider subproblem 2 by putting x4 = 1. Then the LP relaxation
has optimal solution x1 = 0, x2 = 0, x3 = 5

8 , x4 = 1 with z2 = 351
4 . Branch on x3 from node 2. Notice

that putting x3 = 1, x4 = 1 gives no feasible solutions (already too much weight is used) and thus prune
that branch.
It now only remains to consider node 2.1 by putting x3 = 0, x4 = 1. Then the LP relaxation has optimal
solution x1 = 0, x2 = 5

7 , x3 = 0 , x4 = 1 yielding upperbound z2.1 = 345
7 . Branch on x2 from node 2.1.

Putting x2 = 1 gives no feasible solutions thus consider node 2.1.1 by putting x2 = 0, x3 = 0, x4 = 1.
Then the LP relaxation gives x1 = 1, x2 = 0, x3 = 0, x4 = 1 as optimal solution. This is feasible for the
original problem, but the corresponding value is 32 is worse than the lower bound 33 we have obtained
before.
The conclusion is that x1 = 0, x2 = 1, x3 = 1, x4 = 0 with value z∗ = 33 is the optimal solution of the
binary knapsack problem.

5



Exercise 4

(a) [10 points] Consider the instance of the maximum flow problem shown in the directed graph below
where the arc capacities are indicated).
Let the current flow f (which is feasible but not maximal) be as follows: fsa = 3, fsb = 4, fsc = 5,
fad = 6, fbd = 1, fbc = 3, fce = 8, fdt = 7, fea = 3, fet = 5 and no flow on all other arcs of the given
graph. Draw the residual graph Df corresponding to this flow f . Continue from this residual graph the
Ford-Fulkerson algorithm to determine a maximum flow from s to t. State the value of the flow and
show that it is maximal by giving a minimum s-t cut of that value.

(b) [10 points] Consider the problem of finding a minimum weight spanning tree in the non-directed graph
below (where edge weights have been indicated) using Kruskal’s algorithm. Make clear in which order
the edges are picked by the algorithm and draw the minimum weight spanning tree which is finally
obtained. Explain your answer briefly.

6



Solutions exercise 4.

(a) The residual graph for the given flow is as follows:

An augmenting path in the above residual graph is: s → c → e → a → d → t on which an extra flow
of maximal 1 can be pushed. Pushing this extra flow of 1 will remove the arc from c to e in the next
residual graph. It is easily seen that in that next residual graph there will be no longer a path from s
to t because only nodes b and c can be reached from s. Thus the resulting flow after pushing 1 on the
augmenting path should be maximal. This resulting flow is: fsa = 3, fsb = 4, fsc = 6, fad = 7, fbd = 1,
fbc = 3, fce = 9, fdt = 8, fea = 4, fet = 5 having value 13. To show that this is indeed a maximal flow
an s − t cut in the original graph of the same total capacity of 13 should be provided. This is the cut
consisting of the arcs (s, a), (b, d), (c, e) which indeed have a total capacity of 3 + 1 + 9 = 13 and which
is a cut between the nodes {s, b, c} and the other nodes.

(b) Kruskal’s algorithm adds the edge with the lowest weight to the tree unless a cycle is formed by adding
that edge. Applying this algorithm the following edges are added in the following order:
{D,E}, {B,E}, {A,C}, {A,D}, {G,H}, {H, I}, {C,G}, {F,H}. The resulting minimal spanning tree is
then as follows:
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Exercise 5

Consider the acyclic directed graph shown below with length of the arcs as indicated.

(a) [10 points]. Apply dynamic programming to determine the longest path from node A to node K in
this directed graph. It should be clear that you have applied dynamic programming. At the end present
clearly the longest path which you have found.

Solution exercise 5:
Since not all paths from A to K have the same number of arcs it makes no sense to define stages and apply
recursion using the stages. Also Dijkstra’s algorithm should not be used to determine the longest path.
Instead because the directed graph is acyclic we can number the 11 nodes in the graph such that there are
only forward arcs with respect to that numbering. After such numbering of the nodes backward recursion can
be applied using the numbering of the nodes. Such a numbering which is applicable for backward recursion
is A = 1, B = 2, C = 3, G = 4, J = 5, F = 6, D = 7, E = 8, I = 9, H = 10, K = 11.
Define the value function f(i) to be the length of the longest path from node numbered i to destination
node K = 11. Initialize f(11) = 0 and compute the other function values in backward order by the recursion
f(i) = maxj:(i,j)∈A[w(i, j) + f(j)]. Then it follows consecutively (doing calculations in reverse order of the
numbering of the nodes) that f(10) = 7, f(9) = 12, f(8) = 10, f(7) = 16 , f(6) = 18, f(5) = 20, f(4) = 23,
f(3) = 27, f(2) = 20, f(1) = 32.
Backtracking we obtain as longest path the path A → C → G → J → F → D → I → H → K. It is easily
checked that the length of this path is indeed 32 corresponding with the function value f(1).
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