
Operations Research Exam 2h45m

This exam consists of 6 exercises, from which 100 points can be obtained in total. The division of
the points over the various parts is as follows:

Question: 1 2 3 4 5 6 Total

Points: 25 15 20 20 10 10 100

Score:

Exam grade:
total number of points

10

Final course grade: 1
4
Weekly pretest grade + 3

4
Exam grade

1. Consider the following LP, which we will refer to as the “primal LP”.

max z = 4x1 − x2 + 3x3

s.t. 2x1 + 2x2 + x3 + x4 = 5

x1 + 3x2 + x3 − x4 ≤ 15

x1, x2, x3, x4 ≥ 0

(a) (10 points) Determine the dual of this LP.

Solution:

min w = 5y1 + 15y2

s.t. 2y1 + y2 ≥ 4

2y1 + 3y2 ≥ −1

y1 + y2 ≥ 3

y1 − y2 ≥ 0

y1 unrestricted

y2 ≥ 0

(b) (5 points) The primal LP has been solved using the simplex method, yielding the final
tableau below.

Basic z x1 x2 x3 x4 s2 value
z 1 2 7 0 3 0 15
x3 0 2 2 1 1 0 5
s2 0 −1 1 0 −2 1 10



Write down the primal optimal solution and objective value. Also state the objective value
of an optimal dual solution (you don’t need to give the actual optimal solution to the dual).
Explain why there is a difference in the variables listed in in the tableau compared to the
original LP.

Solution: The optimal solution is x3 = 5, x1 = x2 = 0 , and the objective value is 15 .

By strong LP duality, the objective value of the dual is the same as the objective value
of the primal.

There is a difference between the variables in the tableau and the original LP because
slack variables were introduced.

(c) (10 points) Now introduce the new constraint

x1 + 2x3 ≤ 6,

in addition to the existing constraints in the primal LP. Determine an optimal solution to
the new LP (along with the corresponding new objective value) bu using the dual simplex
method.

(Hint: if you do the calculations correctly, all fractions you see will be multiples of 1
3
, and

only one pivot step will be required.)

Solution:
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Z∗ = 121
3
, x∗

1 = 4
3
, x∗

3 = 7
3
, x∗

2 = 0
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2. (15 points) You want to build some windmills for generating power out in the North Sea. The
possible windmill locations form a grid, as shown. Different locations will incur different costs,
because of variations in the sea floor; we denote the cost of site at row i and column j by ci,j, as
shown.

c1,1 c1,2 c1,3 c1,4

c2,1 c2,2 c2,3 c2,4

c3,1 c3,2 c3,3 c3,4

c4,1 c4,2 c4,3 c4,4

You must build exactly 5 windmills. However, it is not allowed to place two windmills on two
sites that are directly adjacent, either horizontally or vertically, because this will cause wind
interference. The grayed circles show one possible solution that is valid. (Notice that you can
place two windmills on squares that are diagonal from each other.)

Formulate the problem of building all the required windmills as an integer linear program. Explain
the meaning of all your variables and constraints.

Solution: Let xi,j be a binary variable indicating whether we build a windmill at the site at
row i and column j.

min
4∑

i=1

4∑
j=1

ci,jxi,j

s.t.
4∑

i=1

4∑
j=1

xi,j = 5

xi,j + xi,j+1 ≤ 1 i = 1, . . . , 4, j = 1, . . . , 3

xi,j + xi+1,j ≤ 1 i = 1, . . . , 3, j = 1, . . . , 4

xi,j ∈ {0, 1} i = 1, . . . , 4, j = 1, . . . , 4.

The first constraint says that there are 5 windmills. The second says that in any horizontally
adjacent pair of sites, at most 1 windmill is built. The third says the same for vertically
adjacent sites.

3. Consider the following problem. You are packing your suitcase for an overseas trip, and need to
decide what items to bring. You have 4 items (just one of each); each has a certain value to you,
and a certain weight:
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weight (kg) 3 5 4 1
value 7 12 10 2

You can only carry at most 10kg of weight. The problem is to decide which items you should put
into your knapsack to maximize the overall value.

(a) (5 points) Write down an ILP for this problem.

Solution:

max 7x1 + 12x2 + 10x3 + 2x4

s.t. 3x1 + 5x2 + 4x3 + 1x4 ≤ 10
x1, x2, x3, x4 ∈ {0, 1}

(b) (5 points) Determine the unique optimal solution of the LP relaxation of this problem. Also
give the corresponding optimal objective value.

Solution: Order the items by decreasing profit per unit weight: 3,2,1,4.

The greedy algorithm yields then x3 = 1, x2 = 1, x1 = 1
3
, x4 = 0 with value 22 + 7/3 =

241
3
.

(c) (10 points) Solve the ILP from (a) using Branch and Bound. Clearly indicate in which order
you compute the nodes of the search tree and where you prune the search tree, and based
on which pruning criterion.

Solution:

Page 5



So the final solution is x1 = 0, x2 = x3 = x4 = 1, with an objective value of 24. (The
above didn’t rule out the possibility of another solution of the same objective value, but
there cannot be a solution with a strictly larger objective value.
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4. Consider the following directed graph; arc capacities are shown. In addition, an s-t-flow f has
been given (the circled numbers).
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(a) (2 points) Write down the value of the flow f .

Solution: 9, by considering the arcs leaving s, for example.

(b) (8 points) Determine either i) a flow of strictly larger value, or ii) argue convincingly that
f is a maximum flow.

Solution: The flow is a maximum flow. To see this, we note that S = {s, a, c, d, f} is
an s-t-cut of capacity 4 + 2 + 3 = 9 (the arc from b to d does not contribute to the
capacity). Since this is the same as the value of the flow f , it follows by the max-flow
min-cut theorem that it is maximal.

(c) (10 points) Find a shortest s-t-path in the digraph using Dijkstra’s algorithm, assuming
that every arc has length 1 (do not use the capacities of the arcs as lengths!). Show your
working.

Solution:

a b c d e f t
Iteration 1: S = {s} (1, s) (∞, ∅) (1, s) (∞, ∅) (1, s) (∞, ∅) (∞, ∅)

Iteration 2: S = {s, a} − (2, a) (1, s) (∞, ∅) (1, s) (∞, ∅) (2, a)

Iteration 3: S = {s, a, c} − (2, a) − (2, c) (1, s) (∞, ∅) (2, a)

Iteration 4: S = {s, a, c, e} − (2, a) − (2, c) − (2, e) (2, a)

So the shortest s-t-path has length 2, and following the parent pointers back from t, we
see that t’s parent is a, and a’s parent is s. So this path is s− a− t.

(The above is the shortest solution; if one makes different choices about what to put in
S in each iteration, it can be longer.)
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5. (a) (4 points) You are considering two algorithms for solving a certain problem. On an input
of size n, the worst-case running time of the first algorithm n is n2 + n2n + 100, and of the
second algorithm is 100n4 + 200n3 + 3000.

Which algorithm is faster, assuming a large input size? Explain your answer.

Solution: The exponential function 2n grows much faster than any polynomial, and n2n

grows only faster. So the second algorithm will be much faster for sufficiently large n.

(b) (6 points) What is the length of a longest increasing subsequence of the following sequence?

(1, 3, 2, 6, 4, 10, 7, 9).

You must solve this problem using dynamic programming – show your working. (You do
not need to provide the actual subsequence, but it may be a good idea for checking your
answer)

Solution:
i 1 2 3 4 5 6 7 8
di 1 2 2 3 3 4 4 5

So the longest increasing subsequence has length maxi di = 5 (e.g., 1, 3, 6, 7, 9).
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6. (10 points) This question is challenging; I recommend completing the rest of the exam
before attempting it.

Consider the following variation of the edit distance, which I’ll call the modified edit distance.
One can add a letter, or modify a letter, as before. But now, one can delete any sequence of
consecutive letters, and this counts as just one operation. For example: given the initial word
REASON and final word WRONG, one could delete EAS to get RON, then add W to get WRON,
and then add G to get WRONG. This is in fact the best solution, so the modified edit distance
is 3.

Thinking of this in terms of columns: the configuration is

- R E A S O N -
W R - - - O N G

1 1 1

But instead of paying 1 for each column with a change, we pay only 1 for columns 3-5.

Describe a dynamic programming algorithm to determine the modified edit distance, given an
initial word x1x2 . . . xm that must be changed to y1y2 . . . yn. You only need to determine the
modified edit distance itself, not the way that the word should be transformed.

You should use the same subproblems as with the original edit-distance problem; thus, define

E(i, j) = modified edit distance between x1x2 . . . xi and y1y2 . . . yj.

In fact, you can use the following template. All you need to do is decide what should go in the
placeholders [[1]], [[2]] and [[3]] (with explanation).

1: E(0, 0) = 0
2: E(i, 0) = [[1]] for all 1 ≤ i ≤ m
3: E(0, j) = [[2]] for all 1 ≤ j ≤ n
4: for i = 1, 2, . . . ,m do
5: for j = 1, 2, . . . , n do
6: E(i, j) = [[3]]

7: return E(m,n)

Solution: For placeholder [[1], we must set E(i, 0) = 1, since we can delete the entire word
at a cost of 1.

For placeholder [[2]], we must set E(0, j) = j; we still have to add letters one at a time.
(Unlike the normal edit distance, the modified edit distance can change if we swap the role
of the two words involved!)

For placeholder [[3]], we have to think pretty hard. Again, consider the final column of the
optimal solution corresponding to E(i, j). If both have letters, or the first row is “-” and the
second has a letter, nothing changes. But if the first row has a letter and the second a “-”, we
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must allow for the possibility that multiple consecutive elements are deleted. But this isn’t a
serious problem: if we delete k elements in a row, that means that the final k columns must
look like

· · · yi−k+1 · · · yi−1 yi
· · · - · · · - -

So the cost of the solution is then equal to E(i− k + 1, j) + 1.

So [[3]] should be

E(i, j) = min
{
E(i− 1, j − 1) + diff(xi, yj), E(i, j − 1) + 1,min

k≤j
E(i− k, j) + 1

}
.
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