
Exam Operations Research

Calculator is not allowed

Construction of the exam

This exam consists of 6 exercises, from which 100 points can be obtained in total. The division of the
points over the various parts is given in the table.

Exercise a b c

Exc. 1 10 10 5
Exc. 2 15 - -
Exc. 3 5 15 -
Exc. 4 10 5 -
Exc. 5 10 - -
Exc. 6 15 - -

Exam mark

total number of points
10

Final course mark

1

4
Instruction mark + 3

4
Exam mark

————————-

Exercise 1

max Z = 5x1 − x2 + 4x3

s.t. 2x1 + 2x2 − x3 ≤ 5
3x1 − 2x2 + 3x3 ≤ 14

x1, x2, x3 ≥ 0.

(a) Translate this LP-problem into standard basis form. Give the starting solution for the simplex
algorithm and apply one iteration to get from the starting solution to an improved basic feasible
solution. Show precisely how you find this improved basic feasible solution.

(b) Formulate the dual LP-problem.

(c) The following simplex tableau displays the optimal solution of the primal problem.

Basic z x1 x2 x3 s1 s2 value

(Z) 1 2.75 0 0 1.25 1.75 30.75
(x2) 0 2.25 1 0 0.75 0.25 7.25
(x3) 0 2.50 0 1 0.50 0.50 9.50

Without solving the dual, give the optimal dual solution and the optimal dual objective value.
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Answers Exercise 1

Answer 1a. First we bring the problem in standard form:

max Z = 5x1 − x2 + 4x3

s.t. 2x1 + 2x2 − x3 + s1 = 5
3x1 − 2x2 + 3x3 + + s2 = 14

x1, x2, x3, s1, s2 ≥ 0.

The starting tableau is

(z) 1 −5 1 −4 0 0 0
(s1) 0 2 2 −1 1 0 5
(s2) 0 3 −2 3 0 1 14

Choose x1 as entering variable. The minimum ratio test takes min
{

5

2
, 14

3

}

= 5

2
⇒ s1 is leaving variable.

The new tableau becomes

(z) 1 0 6 −6 1

2

5

2
0 12 1

2

(x1) 0 1 1 − 1

2

1

2
0 2 1

2

(s2) 0 0 −5 9

2
− 3

2
1 6 1

2

Answer 1b. The dual problem is

min W = 5y1 + 14y2

s.t. 2y1 + 3y2 ≥ 5
2y1 − 2y2 ≥ −1
−y1 + 3y2 ≥ 4

y1, y2 ≥ 0.

Answer 1c. The dual optimal solution is given by the reduced objective coefficients of the starting
variables (the slack variables in this case) plus their original objective coefficients (thus 0 in this case).
Hence y1 = 1.25 and y2 = 1.75. The optimal value is according to the strong duality theorem equal to
30.75. For verification of the optimal value, the dual solution has value 5× 5

4
+ 14× 7

4
= 123

4
= 30 3

4
.

Exercise 2. Please notice that for correct parts of the model in this exercise you can already gain points.

A group of 3 general physicians, GP1,GP2 and GP3, share their practice. Every day, at the start of the
day, the patients who have asked for a consult are assigned to the 3 GPs. Each patient has indicated if he
requires a short consult (15 minutes) or a long consult (30 minutes). This week there are 20 patients,
numbered 1, 2, . . . , 20. The first 7 patients have indicated to need a long consult. All the others require a
short consult.

The GPs would like to find an assignment of the patients such that the total amount of time they will be
busy is as equal as possible. But they are a very social team, and GP3 joined the practice just a month
ago, and it is her first job as an independent GP. This means that she needs twice as much time for the
patients as is indicated: thus, a short consult takes her 30 minutes and a long consult takes her 1 hour.

For the same reason there are some patients that should not be assigned to GP3. These are the patients
numbered 1, 5 and 18. Moreover, GP2 does not like to get more than 2 long consult patients. GP1 gives
the restriction that if he gets assigned patient 13 then he does not want to see patient 14. Finally, patients
9 and 10 form a couple and should not be assigned to the same GP.

Formulate this problem as an integer linear optimization problem.
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Answer 2. Introduce binary variables (2pt) xij that have value 1 if patient j is assigned to GPi,
i = 1, 2, 3, j = 1, . . . , 20. I also introduce the variable Ti for the total time that GPi will be busy, i = 1, 2, 3.
There is some choice in the objective, since “as equal as possible” can be formulated in various ways. For
example it can be modelled as minimizing the busy time of the GP who is busy longest, or maximizing the
busy time of the GP who is busy shortest, or minimizing the sum of the pairwise differences between the
busy times of the GPs. Let me take the first one, for which I introduce yet another auxiliary variable w

and define objective (3pts)
minw

subject to:

w ≥ T1

w ≥ T2

w ≥ T3

Restrictions from definitions of Ti’s (3pts)

T1 =

7
∑

j=1

30x1j +

20
∑

j=8

15x1j

T2 =

7
∑

j=1

30x2j +

20
∑

j=8

15x2j

T3 =

7
∑

j=1

60x3j +

20
∑

j=8

30x3j

Every patient needs to be assigned (2pts)

x1j + x2j + x3j = 1, j = 1, . . . , 20

Extra restrictions because of GP-patient combinations (1pt each)

x31 = 0, x35 = 0, x3,18 = 0

7
∑

j=1

x2j ≤ 2

x1,14 ≤ 1− x1,13

xi9 + xi,10 ≤ 1, i = 1, 2, 3

Binarity of the variables (1pt)
xij ∈ {0, 1}, i = 1, 2, 3, j = 1, . . . , 20

Exercise 3.

Consider the following 0-1 knapsack problem.

max 7x1 + 8x2 + 3x3 + 10x4

s.t. : 4x1 + 5x2 + x3 + 5x4 ≤ 9
x1, x2, x3, x4 ∈ {0, 1}
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(a) Determine the unique solution of the LP-Relaxation of this problem. Also give the corresponding
optimal objective value of the LP-Relaxation.
Answer 3a. Order the items on non-increasing profit per unit weight: 3,4,1,2.
The greedy algorithm yields then x3 = 1, x4 = 1, x1 = 3

4
, x2 = 0 with value 18 1

4

(b) Solve the 0-1 knapsack problem using Branch&Bound. Clearly indicate in which order you compute
the nodes of the search tree and where you prune the search tree, and based on which pruning
criterion.

Answer 3b. Just a sketch of the solution without pictures of the search tree: Branching on x1 yields
a solution of the LP-relaxation for x1 = 0, having x3 = x4 = 1 en x2 = 3

5
with value 17 4

5
. Hence,

rounded down this yields 17 as upper bound. The solution itself rounded down gives x1 = x2 = 0 and
x3 = x4 = 1 with value 13. For x1 = 1 we get x3 = 1, x4 = 4

5
, x2 = 0 with value 18. (Take care!

Although the value of the solution is here integer, the solution itself is not!). We branch further on
the second node with x4 = 0 and x4 = 1. The first one, x4 = 0 gives solution of the LP-relaxation of
x1 = 1,x4 = 0, x3 = 1, x2 = 4

5
with value 16 2

5
. The node with x4 = 1 happens to have as optimal

solution of the LP-relaxation the integer solution x1 = x4 = 1, x2 = x3 = 0 with value 17. Therefore,
this node can be pruned because of criterion P1. But now, all other open nodes can be pruned based
on criterion P2.

Exercise 4.

Consider the max-flow problem on the network in the figure. The number next to an arrow gives the
capacity of that arrow.

(a) Find the maximum flow from s to t using Ford-Fulkerson. Show clearly which flow augmenting paths
you choose in each iteration.
Answer.

Send flow over s, 2, 4, 7, t with bottleneck capacity 4;
Send flow over s, 1, 3, 6, t with bottleneck capacity 2;
Send flow over s, 2, 4, 6, t with bottleneck capacity 1;
Send flow over s, 2, 5, 8, t with bottleneck capacity 1;
From here, no flow augmenting path can be found that uses only forward arrows. Neither in the
residual network (which I don’t draw here) there is an s-t-path. Hence the optimal flow value is 8.

(b) Using the residual network in the optimum, find the minimum s-t-cut.
Answer. In the residual network (which I don’t draw), the vertices s, 1, 2, 3, 4, 5, 8 are still reachable
from s. The total capacity of the cut is c36 + c46 + c47 + c8t = 2 + 1 + 4 + 1 = 8

s

1

2

3

4

5

6

7

8

t

3

6

3

10

7

25

1

15

2

1

4

6

2

8

1

15

5

1
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Exercise 5.

Undirect the arrows in the figure of Exercise 4 and interpret the numbers in the figure as weights of the
corresponding edges. Find the minimum spanning tree in the resulting graph. State whether you use
Prim’s or Kruskal’s algorithm and clearly show how you use the algorithm.

Answer Exercise 5

The easiest to write out is Kruskal. We order the edges on increasing weight:
(3, 4), (4, 6), (7, 8), (8, t), (5, 8), (3, 6), (s, 1), (1, 3), (4, 7), (6, t), (s, 2), (4, 8), (2, 4), (6, 7), (1, 4), (4, 5), (7, t), (2, 5).
Then we select:

(3, 4), (4, 6), (7, 8), (8, t), (5, 8)

The next one (3, 6) would create a cycle. Thus we select

(s, 1), (1, 3), (4, 7)

The next one (6, t) would create a cycle. Thus we select

(s, 2)

Since we have 10 vertices and we have now 9 edges we stop the search and output the tree

(3, 4), (4, 6), (7, 8), (8, t), (5, 8), (s, 1), (1, 3), (4, 7), (s, 2)

with total weight 22.

Opgave 6.

A manufacturer of bicycles is planning his production of racing bicycles for the 6 months of the season.
Outside of the season there is no demand from the retailers for racing bicycles. Market data from the past
have given good estimates of what the expected demand will be. They are given in the table below. The
production cost differs per month. The unit production cost are also given in the table. If racing bicycles
are produced in a month, they are produced in one large batch because the production of racing bicycles
requires a different setting of most of the machine park than the production of other bicycles. The cost of
setting up the production of a batch of racing bicycles is 1000 euro. This setup cost is the same in each
month. Finally, for each of the racing bicycles remaining in stock at the end of a month a holding cost of
20 euro is paid, also equal over all 6 months.

Month demand unit cost
April 700 150
May 1000 100
June 900 130
July 500 170
August 700 170
Sept. 300 100

Formulate this problem as a dynamic programming problem. To do so, describe the states and the
interpretation of the value function in words. Give the recursion and the starting conditions and describe
what needs to be computed in terms of the value function. Hint: Start with defining the stage.

Answer Exercise 6

Let me number the months, 1 = April, 2 = May,...,7 = October, write dj for the demand in month j, and
cj for the unit production cost in month j. Later I use pj for the production in month j.
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• For a stage we take the month: 1 = April, 2 = May,...,7 = October, at stage j we have already
decided on the production of bicycles in the months 1, . . . , j − 1 and are to decide on the production
in month j.

• As a state I define b, the number of racing bicycles in stock at the beginning of the month.

• The decision is how much to produce in the month j

• The direct cost of a decision is

– 20(b− dj) if nothing is produced in month j, which is feasible only if b ≥ dj .

– 1000 + cjpj + 20(b+ pj − dj) if pj > 0 is produced

• The value function fj(b) is the minimum cost if we are to decide about production in month j and
have a stock of b at the start of month j and we still have to produce for months j, j + 1, . . . , 6.

• The recursion is given by

fj(b) = min

{

20(b− dj) + fj+1(b− dj), min
pj |b+pj≥dj

{1000 + cjpj + 20(b+ pj − dj) + fj+1(b + pj − dj)}

}

• To be computed: f1(0)

• Starting constraints: f7(0) = 0 and f7(b) = M > 0 ∀b > 0, where in fact choosing M = 1 is already
sufficient. We add to the starting conditions that fj(b) = ∞ if b < 0, for all j, to enforce that decision
pj = 0 is only made when b > dj .
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