Dept. Computer Science Vrije Universiteit

Operating Systems 04.06.2008

10	An operating system can be seen as a virtual machine or as a resource manager. Explain the difference.	5pt ·
1	b Describe the difference between the raw, cooked, and cbreak terminal modes.	5pt
2	Describe the flow of control as HW interrupts are handled. (Please draw a diagram to support your answer.)	10pt >
2	b What is DMA? How does it work, and what are its advantages/disadvantages?	5pt
30	What is the difference between processes and threads? What information is stored respectively?	5pt -
31	b What are the advantages/disadvantages of implementing threads in user versus kernel space?	5pt .
40	What is the purpose of the TSL instruction? Describe the advantages of using this HW-based solution, as opposed to using other SW-based solutions.	5pt -
4	Describe a solution to the Dining Philosophers problem that avoids deadlock and starvation, and that maximizes parallelism.	10pt
4	Consider the following allocation of resources R1, R2, R3, and R4. Show that this is a safe state.	5pt

Process	R1	R2	R3	R4
A	4	1	0	1
В	0	2	0	0
С	1	0	1	0
D	1	0	0	1
E	0	0	1	0

A	llocated	l reson	rces

۱	Process	R1	R2	R3	R4
	A	1	1	0	0
	В	0	1	1	2
1	С	3	1	0	0
	D	0	0	1	1
	E	2	1	1	0
D					

Resources	etill	need	ad

R1	R2	R3	R4		
7	4	2	2		
Originally available					

5a	Please describe 3 Disk Arm Scheduling algorithms.	5pt
5b	What kind of disk arm scheduling does MINIX3 use? Please explain why.	5pt
6a	Describe the main characteristics of the a.out executable file format.	5pt
6b	Consider the standard layout of a UNIX file system. Keeping track of available disk blocks and i-nodes is done through bit maps. How do you determine the maximum number of files that a file	
	system can handle?	5pt
6c	Consider again a UNIX file system. How do you determine the maximum file size?	5pt
7a	What is a buffer cache, and why is it useful? Also briefly describe the block write-through strategies	
	used by MS-DOS vs. UNIX.	5pt
7b	In MINIX3, what exactly does the procedure DO_RDWT do (see code on other page)? Please explain each step, and describe the greater context in which this procedure is used.	5pt.

```
11148 PRIVATE int do_rdwt(dp, mp)
11149 struct driver *dp;
11150 message *mp;
11151 {
11153
        iovec_t iovec1;
11154
       int r, opcode;
11155
       phys_bytes phys_addr;
11156
11158
        if (mp->COUNT < 0) return(EINVAL);</pre>
11159
11161
         sys_umap(mp->PROC_NR, D, (vir_bytes) mp->ADDRESS, mp->COUNT, &phys_addr);
11162
         if (phys_addr == 0) return(EFAULT);
11163
11165
         if ((*dp->dr_prepare)(mp->DEVICE) == NIL_DEV) return(ENXIO);
11166
         opcode = mp->m_type == DEV_READ ? DEV_GATHER : DEV_SCATTER;
11168
11169
         iovec1.iov_addr = (vir_bytes) mp->ADDRESS;
11170
         iovec1.iov_size = mp->COUNT;
11171
11173
        r = (*dp->dr_transfer)(mp->PROC_NR, opcode, mp->POSITION, &iovec1, 1);
11174
11176
        return(r == OK ? (mp->COUNT - iovec1.iov_size) : r);
11177 }
```

Grading: The final grade is calculated by adding the scores per question (maximum: 90 points), and adding 10 bonus points. The maximum total is therefore 100 points.