
Dept. Math. & Comp. Sc. Midterm Operating Systems

Vrije Universiteit 31.03.2005

1a An operating system can be seen as a virtual machine or as a resource manager. Explain the differ-

ence. 5pt

As a virtual machine, an operating system provides an abstraction over the hardware by means of,

for example, system calls. In this way, it provides a convenient way to program a machine without

the need to know about hardware details. As a resource manager, it allows multiple processes (or
users) to share the various resources such as CPU, storage, and network. Its role of manager consists

of protecting those resources against simultaneous access, protecting processes against each other,

supports fair sharing of those resources, and accounts processes for resource usage.

1b UNIX operating systems represent a hard disk by means of a so-called block special file. Explain

what such a file is. 5pt

A block special file for a hard disk is a representation of that disk by means of a file allowing a

program to access the k-th block as simply the k-th block in that file. Read and write operations are

thus carried out immediately on the raw device, but this fact is hidden from the program using the

special file.

1c There is no DELETE file system call in MINIX. How then is a file deleted? 5pt

MINIX, as other Unices, keeps track of the number of links to a file. The UNLINK system call removes

a link to a file. When the last link is removed, the operating system deletes the file.

2a What is meant by the context of a process? 5pt

The context of a process consists of the values contained in various registers of, for example, the

CPU and MMU that are absolutely necessary to restore in order to let a process continue exactly
where it left off. Crucial registers include the program counter, segment registers, and stack pointer.

2b When a hardware interrupt occurs, there is a moment when the software takes control over from the
hardware. Explain when. 5pt

This question is best explained by describing how an interrupt is initially handled. When an interrupt

occurs, the interrupt controller passes the interrupt identifier to the CPU. The value in the program

counter in the meantime has been pushed onto the current stack. The interrupt identifier is an offset

into the interrupt table, from where the hardware loads a start address of the associated interrupt

handler. At that point, the software takes control over from the hardware.

2c Explain what the test-set-lock instruction (TSL) does, and show how it can be used to protect a

critical region. 5pt

The TSL instruction reads the value of a variable and immediately sets it to 1 in a single atomic
action. The following code can be used to protect a critical region:

enter region:
tsl register,lock // copy lock to register and set lock to 1
cmp register,#0 // was lock zero?
jne enter region // if it was non zero, lock was set, so loop
ret // return to caller; critical region entered

leave region:
move lock,#0 // store a 0 in lock
ret // return to caller

2d In MINIX, what does the procedure MINI SEND do (see code on other page)? 5pt

MINI SEND is called, for example, as the result of a system call. The operating system copies a

message on behalf of the sender to the address space of the receiver, provided the latter was blocked

waiting for that message. If the receiver is not waiting, the sender will be queued for the receiver

and marked as BLOCKED (so that the CPU will be deallocated from it). When the message has been

copied to the receiver’s address space, the latter is marked as READY so that the CPU can eventually

be allocated to it.

lOMoARcPSD|2306213

3a What are the necessary and sufficient conditions for a deadlock to take place? 5pt

(1) A resource is assigned to at most one process at a time; (2) Processes can request a resource while

holding another; (3) A resource cannot be taken away from a process; (4) Two or more processes

must be waiting for release of a resource held by another.

3b What is the fundamental difference between I/O tasks and processes in MINIX? 5pt

Each process runs in its own address space with its own stack, whereas an I/O task is part of the

kernel and thus runs in the context of the kernel. In essence, a task can be compared to a thread:

it shares the address space with other tasks running in kernel mode, but still has its own stack and

context.

THIS EXAM CONSISTS OF TWO PAGES

2

lOMoARcPSD|2306213

0001 PRIVATE int mini_send(caller_ptr, dest, m_ptr)
0002 register struct proc *caller_ptr;
0003 int dest;
0004 message *m_ptr;
0005 {
0006 register struct proc *dest_ptr, *next_ptr;
0007 vir_bytes vb;
0008 vir_clicks vlo, vhi;
0009
0010 if (isuserp(caller_ptr) && !issysentn(dest)) return(E_BAD_DEST);
0011 dest_ptr = proc_addr(dest);
0012 if (dest_ptr->p_flags & P_SLOT_FREE) return(E_BAD_DEST);
0013
0014 vb = (vir_bytes) m_ptr;
0015 vlo = vb >> CLICK_SHIFT;
0016 vhi = (vb + MESS_SIZE - 1) >> CLICK_SHIFT;
0017 if (vhi < vlo ||
0018 vhi - caller_ptr->p_map[D].mem_vir >= caller_ptr->p_map[D].mem_len)
0019 return(EFAULT);
0020
0021 if (dest_ptr->p_flags & SENDING) {
0022 next_ptr = proc_addr(dest_ptr->p_sendto);
0023 while (TRUE) {
0024 if (next_ptr == caller_ptr) return(ELOCKED);
0025 if (next_ptr->p_flags & SENDING)
0026 next_ptr = proc_addr(next_ptr->p_sendto);
0027 else
0028 break;
0029 }
0030 }
0031
0032 if ((dest_ptr->p_flags & (RECEIVING | SENDING)) == RECEIVING &&
0033 (dest_ptr->p_getfrom == ANY ||
0034 dest_ptr->p_getfrom == proc_number(caller_ptr))) {
0035 CopyMess(proc_number(caller_ptr), caller_ptr, m_ptr, dest_ptr,
0036 dest_ptr->p_messbuf);
0037 dest_ptr->p_flags &= ˜RECEIVING;
0038 if (dest_ptr->p_flags == 0) ready(dest_ptr);
0039 } else {
0040 caller_ptr->p_messbuf = m_ptr;
0041 if (caller_ptr->p_flags == 0) unready(caller_ptr);
0042 caller_ptr->p_flags |= SENDING;
0043 caller_ptr->p_sendto= dest;
0044
0045 if ((next_ptr = dest_ptr->p_callerq) == NIL_PROC)
0046 dest_ptr->p_callerq = caller_ptr;
0047 else {
0048 while (next_ptr->p_sendlink != NIL_PROC)
0049 next_ptr = next_ptr->p_sendlink;
0050 next_ptr->p_sendlink = caller_ptr;
0051 }
0052 caller_ptr->p_sendlink = NIL_PROC;
0053 }
0054 return(OK);
0055 }

Grading: The final grade is calculated by accumulating the scores per question (maximum: 45 points),

and adding 5 bonus points. The maximum total MT is therefore 50 points. The final exam consists of

two parts. Part 1 covers the same material as the midterm. Let P1 be the number of points for part 1,

and P2 the number of points for part 2 (each being at most 50 points). The final grade E is computed as

E = max{MT, P1}+ P2. The midterm exam counts only for first full exam.

3

lOMoARcPSD|2306213

