Exam Neural Networks

Wojtek Kowalczyk 20.10.2008

It is a "closed book" exam: you are not allowed to use any notes, books, etc. You may formulate your answers in Dutch or in English. For each problem you get some points; additionally you get 10 points for free. The final grade for this exam is the total number of points you get divided by 10. There are 5 problems.

1) A Simple Network (3+3+4+5+5+5 points)

Let us consider a single unit network with two inputs, one output, and the logistic sigmoid activation function $f(a)=1/(1+e^{-a})$:

- a) Express the output of the network, *out*, as a function of five variables: x, y, w_0 , w_1 , w_2 (write a formula).
- b) Express the error made by the network on the input (x,y) and the target output t as a function of x, y, t, w_0 , w_1 , w_2 (write a formula).
- c) Describe the gradient descent minimization algorithm.
- d) Derive the weight update rules for our network.
- e) Can this network be trained to solve the XOR-problem? Justify your answer.
- f) Now let us assume that instead of the logistic activation function we use the sinus function: f(a)=sin(a). Can our network be now trained to solve the XOR-problem? Justify your answer.

In questions e) and f) we assume that the output of the network, out, is interpreted as 0 when out < 0.5, and 1 when $out \ge 0.5$.

2) Backpropagation (6*5 points)

Let us consider a multi-layer perceptron with 100 inputs, 10 hidden nodes in the first layer, 5 nodes in the second hidden layer and one output node. Let us assume that there are no bias nodes and that all the nodes use the logistic activation function.

- a) Describe working of the network (forward pass).
- b) Describe the backpropagation algorithm (include the formulation of the generalized delta rule).
- c) How many weights are used by the network?
- d) How many operations (additions, multiplications, calling the activation function) should be performed in order to produce an output on a single input vector?
- e) How many operations are needed for a single step of the backpropagation algorithm (propagating errors backward and updating all weights)?
- f) Is it true that during the training process the error (Mean Squared Error) on the (finite) training set cannot grow indefinitely? Justify your answer.

3) Thermometer representation of data (3+7 points)

- a) Describe a "thermometer representation" of data.
- b) Demonstrate that a network with a linear activation function may calculate a non-linear function of a single variable *x*, provided that values of *x* are represented with help of a thermometer representation.

4) The NETtalk System (5*3 points)

Describe in detail (as much as you can) the NETtalk system:

- a) What was the purpose of the system?
- b) What was used as a training set?
- c) How were the inputs and outputs represented?
- d) What was the network architecture?
- e) What accuracies were achieved?

5) Winner-Take-All Networks (10 points)

Describe the architecture, working and training a Winner-Take-All (WTA) network. What are typical applications of these networks?