Networks and Graphs lecture 11

constructing scale-free networks

in the scale-free networks we mimic the creation of real world networks where new nodes get attached to exiting ones. constructing the scale-free network using a growth process with preferential attachment. (nodes with high degrees will ride in degree and nodes with low degrees will stay low in degree).

BA-Graphs

constructing BA-Graphs:

let $G \in ER(n_0, p)$ and V = V(G), let $n \gg n_0$ while |V| < n do:

• $V \leftarrow V \cup v$ (add new vertex to graph)

• add edges $< v, u > for \ m \ge n_0$ (add edges to the new vertex).

each u is chosen with a probability proportional to its degree:

$$\mathbb{P}[select \ u] = \frac{\delta(u)}{\sum_{w \in V - \{v\}} \delta(w)}$$

the expected degree distribution of a BA $(n,n_0;m)$ -graph is:

$$\mathbb{P}[\delta(u) = k] \approx \frac{2m^2}{k^3} \propto \frac{1}{k^3}$$

- creating BA-graphs with a specific α : start with a set V of n_0 vertices and no edges. while |V| < n do:

 $V \leftarrow V \cup v$ (add new vertex).

 add edges $< v, u > for m \ge n_0$. each edge is considered with a probability proportional to $\delta(u)$.(as before)

• for a constant $c \ge 0$, add c * m edges between vertices V - [v]. the probability to add an edge $\langle x, y \rangle$ is proportional to $\delta(x) \cdot \delta(y)$.

In a generalized $BA(n, n_0, m)$ -graph, the expected degree distribution is

$$\mathbb{P}[\delta(u) = k] \propto k^{-(2 + \frac{1}{1 + 2c})}$$

For
$$c = 0$$
, $\mathbb{P}[\delta(u) = k] \propto \frac{1}{k^3}$

$$\lim_{c \to \infty} \mathbb{P}[\delta(u) = k] \propto \frac{1}{k^2}$$

BA-Graphs have a shorter average path lengths than ER-Graphs, this is due to the presence of hubs(vertices with a very high degree) in the BA-Graphs.

these hubs will be vulnerable to targeted attacks, a scale-free network will quickly become disconnected as hubs are removed. but if the attacks are random a scale-free network will be very robust.

Graphs in $ER(n, \frac{2m}{n-1})$ have the same expected average degree. But they tend to have a much lower clustering coefficient, namely $\frac{2m}{n-1}$.

BA-graphs have a higher clustering coefficient than ER-Graphs, yet these values are still relatively small.