Networks and Graphs lecture 10

complex and random networks

real-world networks can be modeled as a random graph with where edges appear with some probability.

ER-Graph

ER(n,p) is a graph with n vertices with the probability p of edges to be included in the graph.

on average the degree of a vertex is p * (n - 1).

on average the clustering coefficient of any vertex in a ER-graph is **p**.

the probability that a vertex is connected to precisely a subset of k vertices is: p^{k} *

$$\mathbb{P}[\delta(u) = k] = \binom{n-1}{k} \cdot p^k \cdot (1-p)^{n-1-k}$$

For large $G \in ER(n, p)$ the expected average shortest path length $\bar{d}(G)$ tends to

$$\frac{\ln(n)-\gamma}{\ln(\overline{\delta})}+0.5$$

Where \ln is the natural logarithm and γ the Euler's constant (0.577...)

ER-graphs have a small average shortest path length, but don't have a high clustering coefficient.

WS-Graphs

made for constructing a graph with a high clustering coefficient and a small average shortest path length.

constructing WS-graphs: $\bullet \ \ {\it Choose} \ n \gg k \gg ln(n) \gg 1 \ {\it and} \ {\it k has to be even}.$

- position all vertices in a ring and connect all vertices to k/2 right-hand and left-hand neighbors (just like a $H_{n,k}$).
- consider each edge once and with a probability p replace it with an edge randomly chosen and not already connected to the source.
 the resulting graph is a WS(n,k,p)

For all graphs in WS(n, k, 0), the average shortest path length $\bar{d}(u)$ from vertex u to any other vertex is roughly $\frac{n}{2k}$

but when the probability p increases the average shortest path length rapidly decreases while the clustering coefficient also decreases but much slower and thus will the clustering coefficient stay high.

Scale-free networks

$$\mathbb{P}[\delta(u) = k]$$
 decreases exponentially when k increases.

this means that very few nodes have a very high degree. the degree distribution of a scale-free network follows the power-law:

$$\mathbb{P}[\delta(u) = k] \propto k^{-\alpha}$$
 (usually 2 < α < 3)

these networks are called scale-free because when you scale(zoom in of out) you are able to see the same graph.