
Dept. Computer Science Networks and Graphs

VU University Amsterdam 29.05.2013

BE SURE THAT YOUR HANDWRITING IS READABLE

Part I

1a Let G denote a simple graph with n vertices and m edges. For each of the following mathematical
statements, (1) translate the statement into common English and (2) tell whether it is true or false.

1. G[E(G)]⊆ G.

2. ∀u ∈V (G) : δ(u)≥ min{δ(v)|v ∈V (G)}

3. G is connected ⇒ n ≤ m

4. ∃H,H ′ ⊆ G : G[V (H)∪V (H ′)] = Kn.

5. ∃u,v ∈V (G) :̸ ∃(u,v)-path ⇒ ω(G)> 1
10pt

1. The graph induced by the edgeset of G is a subgraph of G. True.

2. Each vertex in G has a degree that is greater or equal to the minimal degree. True.

3. If G is connected, then the number of vertices of G is less or equal to the number of edges. False.

4. There exists two subgraphs of G such that the graph induced by the joint set of their vertices is the

complete graph on n vertices. False.

5. If there are two distinct vertices in G that are not connected through a path, then G will consist of

more than one component. True.

2a Prove that for any simple graph G, λ(G)≤ min{δ(v)|v ∈V (G)}. 5pt

Consider a vertex u with minimal degree. If we remove the δ(u) edges incident with u, then u will

become isolated, and certainly the resulting graph will have at least one more component then it had

before (namely the one consisting only of u).

2b Construct a graph for which κ(G)< λ(G)< min{δ(v)|v ∈V (G)}. 5pt

Consider the following graph. Clearly, δ(1) = 4 and is also the minimum vertex degree of G. Fur-

thermore, the set {⟨2,4⟩,⟨2,5⟩,⟨3,5⟩} forms a minimal edge cut of size 3, whereas the set of vertices

{2,5} forms a minimal vertex cut of size 2.
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3a Prove that for any connected simple planar graph with n ≥ 3 vertices and m edges, m ≤ 3n−6. 10pt

Consider a region f in any plane graph of G. For any interior region, let B( f ) denote the number

of edges by which f is enclosed. B( f )≥ 3 for any interior region. With n ≥ 3 we also have that the

exterior region is “bounded” by at least 3 edges. As a consequence, if there are a total of r regions,

then ∑B( f ) ≥ 3r. Note that ∑B( f ) counts every edge in G once or twice, and hence ∑B( f ) ≤ 2m,

so that 3r ≤ ∑B( f ) ≤ 2m, and thus r ≤ 2
3 m. Because we know that m = n+ r − 2, we know that

m ≤ n+ 2
3 m−2, and thus that m ≤ 3n−6.

3b Prove that every connected, planar graph has a vertex with degree less or equal to five. 5pt

For graphs with n ≤ 6 vertices the statement is obviously true. Let G be a connected planar graph

with n > 6 vertices and m edges. Assume all vertices have a degree higher than 5. Because 2m =
∑δ(v) ≥ 6n, and m ≤ 3n− 6, we would have 6n ≤ 6n− 12, which is impossible. Hence, not all

vertices can have degree 5 or more.

4a Give definitions for (1) trail, (2) path, (3) Euler trail, and (4) Euler path. 4pt

(1) A walk in which all edges are traversed at most once. (2) A trail in which all vertices are traversed

at most once. (3) A trail in which all edges of a graph are traversed exactly once. (4) A path in which

all edges of a graph are traversed exactly once.

4b Complete the following statement: “Graph G contains an Euler trail if and only if ...” 3pt

G has exactly two vertices having odd degree.

4c Complete the following statement: “Graph G contains an Euler path if and only if ...” 3pt

G has the form of a single (u,v)-path, with u ̸= v.

5 Prove by induction that the number of edges m of the complete graph with n vertices is equal to
1
2 n(n−1). 5pt

The statement is trivially true for n= 1: m= 0= 1
2 ·1 ·0. Assume the statement holds for the complete

graph with k> 1 vertices and consider Kk+1. Remove any vertex u, to obtain Kk, having, by induction,

a total of 1
2 k(k − 1) edges. Vertex u was joined with k vertices, so that by removing u, we also

removed k edges. This means that |E(Kk+1)|= k+ 1
2 k(k−1) = k+ 1

2 k2− 1
2 k = 1

2 k2+ 1
2 k = 1

2 (k+1)k,

completing the proof.

Part II

6a What is the minimal number of rounds needed in the Bellman-Ford algorithm so that each node has
found the shortest path to every other node? Be sure to explain your answer. 6pt

In the worst case, the shortest path in terms of weights, will consist of the maximal number d of edges

between any two vertices. As a consequence, in order for any two nodes to be sure that they have

found the shortest path, at least d/2 rounds will be necessary (as path information grows from two

sides). Any answer that mentioned diameter (which is getting very close), or better: longest path,

was considered correct.

6b What is routing table of vertex v5 after three rounds of the Bellman-Ford algorithm? Explain your
answer. 6pt
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The routing table will contain the information how to reach any other node at hop-distance 3, and

at minimal path distance. If we look at the first three rounds, we’ll see the following development.
v0 v1 v2 v3 v4 v5 v6 v7

1: ∞ ∞ (1,v2) ∞ (5,v4) (0,v5) ∞ (4,v7)
2: (4,v2) (3,v2) (1,v2) ∞ (5,v4) (0,v5) (6,v7) (4,v7)
3: (4,v2) (3,v2) (1,v2) (5,v2) (5,v4) (0,v5) (6,v7) (4,v7)

7a The clustering coefficient for a real-world network with 1000 vertices and 7500 edges is 0.1. Is this
high? Explain your answer. 6pt

We need to compare this to an Erdös-Rényi graph ER(1000, p). The average degree in the real-world

network can be computed as 1
n ∑δ(v) = 2m

n = 15. We know that the average degree for an ER(n, p)
graph is equal to p(n− 1), meaning that we should compare our real-world network to a network

for which p(n−1) = 15, and thus p ≈ 0.015. This is also the clustering coefficient for the ER graph,

and we conclude that 0.1 is indeed relatively high.

7b Explain how to construct a scale-free network. 8pt

Start with a random network and then repeatedly add a vertex v, connecting it to m existing vertices,

where the probabibily of joining v to u is proportional to the degree of u: the higher δ(u), the higher

the probability of adding the link ⟨v,u⟩ (provided the link does not yet exist). Stop when the graph

has n vertices.

7c Explain how to construct a Watts-Strogatz graph. 6pt

Start with placing n nodes in a “circle,” joining each node to its k/2 left-hand neighbors, and k/2
right-hand neighbors. Then, for each edge ⟨u,v⟩, rewire that edge with probability p to an edge

⟨u,w⟩ with w arbitrarily chosen and keeping the graph simple.

8a Compute the center of the following (signed) graph, as well as its clustering coefficient. 6pt
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Vertices 1,2,3,5,7,8,9 have (lowest) eccentricity 3, vertices 6,4 have 4. That means that the center

consists of vertices 1,2,3,5,7,8,9. The clustering coefficient for all these vertices except 1,7 is 1
3 , the

others have cc 0, meaning the the cc for the entire graph is equal to (5 · 1
3 +4 ·0)/9 = 5

27 .

8b Systematically check if the previous graph is balanced. 6pt

The crux to your answer is that you show whether or not the set of vertices can be split into two

subsets with negative-signed edges between the two sets, and positive-signed edges between nodes

in either set. This is not the case: start with adding vertex 1 into V0. Then add vertex 2 to V0 and 6

to V1. From vertex 2, add 3 and 5 to V0; from 6 add 7 to V0. From vertex 3 add 4 to V1, and from

vertex 5 add 9 to V0 and 8 to V1. We now have a positive-signed edge between V0 and V1: ⟨7,8⟩, so

the graph is not balanced.

8c Consider an affiliation network with adjacency matrix AE, representing np people and ne events,
where AE[i, j] = 1 if and only if person vi participates in event e j, and otherwise AE[i, j] = 0.
Explain what is meant by (1) ∑

ne
k=1(AE[i,k] ·AE[ j,k]) and likewise (2) ∑

na
k=1(AE[k, i] ·AE[k, j]). 4pt

∑
ne
k=1(AE[i,k]·AE[ j,k]) adds the number of events in which both vi and v j participate. ∑

na
k=1(AE[k, i]·

AE[k, j]) adds the number of participants in both event ei as well as event e j.

3

lOMoARcPSD|2306213



9a Explain that the probability P[δ(v) = k] in an ER(n, p) graph is equal to
(

n−1
k

)

pk (1− p)n−1−k 8pt

There are a maximum of n− 1 other vertices that can be a neighbor of v. As there are
(

n−1
k

)

possi-

bilities for choosing k different vertices to be adjacent to v, the probability of having any specific set

of k edges connecting v is as given.

9b Compute the clustering coefficient for an ER(n, p) graph. 6pt

Every vertex with k neighbors can expect a total of
(

k
2

)

· p edges between those neighbors. Because

the maximal number of edges between neighbors is
(

k
2

)

, the clustering coefficient for each vertex is

exactly p.

Final grade: (1) Add, per part, the total points. (2) Let T denote the total points for the midterm exam

(0 ≤ T ≤ 50); D1 the total points for part I; D2 the total points for part II. The final number of points E is

equal to max{T,D1}+D2.

4
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