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2 Problems Chapter 2

Problems Chapter 2

Q 1: Give the adjacency matrix for each of the following graphs, and draw
those graphs.

Gl: V ={1,2,3,4,5,6} and
E={(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6), (4,5),(4,6) }

G2: V ={1,2,3,4,5} and
E={(1,2),(1,4),(23),(24),(25),3,4),35)}

2 3
1
4
5

1 2 3 4 5 6
1 2 3 4 5

1710 1 1 1 0 O
110 1 0 1 0

211 0 0 0 1 0
211 0 1 1 1

31 0 0 0 1 1
310 1 0 1 1

411 0 0 0 1 1
411 1 1 0 0
5/0 1 1 1 0 0 510 1 1 0 0

6|10 0 1 1 0 0

Q 2: Consider the following two graphs:
Gl1: V={1,2,3,4,5,6} and
E={(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6) }
G2: V={1,2,3,4,5} and
E=1{(1,2),(1,4),(2,3),(24),(25),(3,4),(3,5)}

For each graph, check whether it is (1) bipartite, (2) complete, (3) complete
bipartite, (4) complete nonbaprtite.

It is not hard to see that Gy is isomorphic to K33, with Vi = {2,3,4} and V, =
{1,5,6}. In contrast, G, neither complete, nor bipartite, nor complete bipartite.
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To show that Gy is not bipartite, we can, either exhaustively try all combinations
of partitioning its vertex set, yet it is easier to simply identify an odd-length cycle
(such as, for example, [1,2,4,1].

Q 3: Draw the complement of the following two graphs:

2 3
1
4
5
5
2
2 3
3 ®

-

o

Q 4: Prove that for any graph, the sum of its vertex degrees is even.

A simple answer is that we already know that for a graph G = (V, E), we have
that Y ,cy 6(v) = 2 - |E|, which is obviously even. Alternatively, we can start
counting the edges incident with each vertex, and the realizing that we count every
edge twice.

Q 5: Show that every simple graph has two vertices of the same degree.

This can be shown using the pigeon hole principle. Assume that the graph has n
vertices. Each of those vertices is connected to either 0,1,2, ...,n — 1 other vertices.
If any of the vertices is connected to n — 1 vertices, then it is connected to all the
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others, so there cannot be a vertex connected to 0 others. Thus it is impossible to
have a graph with n vertices where one is vertex has degree 0 and another has degree
n — 1. Thus the vertices can have at most n — 1 different degrees, but since there
are n vertices, at least two must have the same degree.

Q 6: Show that if n people attend a party and some shake hands with others
(but not with themselves), then at the end, there are at least two people who
have shaken hands with the same number of people.

The solution is easy to see when modeling this situation as a graph with n vertices.
Two vertices are joined if their associated people have shook hands. The question is
then showing that at least two people have shook the same number of hands, ot, in
other words, that their vertex degree is the same.

Q 7: Show that if every component of a graph is bipartite, then the graph is
bipartite.

Let G consist of components H; = (V;, E;), with set V; = V;1 U V5. Clearly, with
Vi = U; Vi1 and Vo = UU; Vi, we have partitioned the vertex set of G such that no
vertices from Vy or from V; are joined.

Q 8: Show that the complement of a bipartite graph need not to be a bipartite
graph.

Simply consider K33, whose complement is certainly not bipartite because of the
existence of an odd-length cycle.

Q 9: Prove the following. Consider a list s = [dy, dy, ..., dy] of n numbers
in descending order. This list is graphicif and only if s* = [d}, d3, ..., d}_4]
of n — 1 numbers is graphic as well, where

dik: di+1_1 fori:1,2,...,d1
! diiq otherwise

Let us first assume that s* is graphic. We then need to show that s is also graphic.
Let G* be a simple graph with degree sequence s*. We now construct a simple
graph G from G* with degree sequence s as follows (and in doing so, we show that
s is graphic). Take G* and add a vertex u. For readability, let k = dq and consider
the k vertices v1, vy, ..., vy from G* having respectively degree di,d5, ..., d}. We
then join these vertices to the newly added vertex u. Obviously, u now has degree
k, but also each vertex v; now has degree d; + 1. Because all other vertices of
G* are not joined with u, their vertex degree is left unaffected. As a consequence,
the newly constructed graph G has degree sequence [k, di +1,d5 +1, ..., d} +

1,df 4, ..., d;_], which is precisely s.
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Let us now consider the opposite: if s is graphic, we need to show that s* is so as
well. In other words, we need to find a graph G* that has degree sequence s*. To
this end, we consider three different sets of vertices from G. Let u be a vertex with
degree k = dq. Let V. = {v1,0,...,0x} be the respective vertices with the k next
highest degrees dy,d3, ..., dyq. Finally, let W = {wq,wo, ..., w,_r_1} be the
remaining n — k — 1 vertices with degree dy., dy3, . . ., dn, respectively.
Consider the graph G* by removing u from G, along with the k edges incident with
u. If each of these edges is incident with one of the vertices from V, then obviously
G* is a graph with degree sequence (dy —1,d3 —1,...,dxy1 — 1,dxyo, ..., dn),
which is precisely s*.

Now consider the situation that u is adjacent to a vertex from W, say w;. If for
some vertex vj € V, the degree of vj and w; are the same, i.e., o(w;) = (5(vj), then
we can simply swap w; and v; in the original construction of the sets V and W,
meaning that (u,w;) is now an edge incident with a vertex from V instead of W.
Howewver, if 6(w;) < 6(vy) (i.e., 6(w;) is less than the degree of any vertex from V)
we cannot apply such an exchange.

The problem that we need to solve is that there is now a vertex v; not adjacent to
u whose degree will remain the same instead of being decremented by 1. Likewise,
by simply removing u we would decrease the degree of w;, while we would like to
see it unaffected if we want to realize the degree sequence s*. Note, however, that
because 5(v;) > 0(w;), there is a vertex x adjacent to v; but not adjacent to w;
(note also that x # u), as shown in (a) below. In constructing G* we now first
remove edges (u,w;) and (v;,x), and then add edges (x,w;) and (u,v;), leading
to the situation shown in (b) below. The effect is that we now have a graph G’ in
which u is adjacent to v; instead of w;, but without affecting the degree of u, vj, x,
or w;. In other words, G’ has the degree sequence s. If u is now adjacent to vertices
only from V, we have already shown that s* is graphic. If u is still adjacent to a
vertex from W, we apply the same method to construct a graph G” in which u is
adjacent to one more vertex from V. If necessary, we repeat this method until u is
adjacent only to vertices from V, at which point we know that s* is graphic.

(a) (b)

Q 10: Show that two graphs with the same degree sequence need not be
isomorphic.

Counter examples include the following:
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Q 11: Show that there is no simple graph with 12 vertices and 28 edges in
which

(a) the degree of each vertex is either 3 or 4, or

(b) the degree of each vertex is either 3 or 6.

Suppose there is a graph with k vertices of degree 3 in the graph. For (a), if the
remaining (12 — k) vertices have all degree 4, the equation 3k + 4(12 — k) = 56
gives k = —8, which is impossible. For (b), if the remaining (12 — k) vertices all
have degree 6, the equation 3k + 6(12 — k) = 56 gives k = 5%, which is also not
possible.

Q 12: Show that there is no simple graph with four vertices such that three
vertices have degree 3 and one vertex has degree 1.

Suppose that such a graph G exist. We know that |[E(G)| = 5. Let v € V(G)
with 6(v) = 1. Consider the graph Gy = G — v, having 3 vertices and 4 edges,
one vertex w having degree 2. Let Go = Gy — w. Clearly, Gy has 2 vertices and 2
edges. In order for G to be simple, G, must be simple as well. This is impossible.

Q 13: Show that the number of vertices in a k-regular graph is even if k is
odd.

Recall that in a k-reqular graph, each vertex has degree k. We know that }_6(v) =
k-n = 2-m, where m is the number of edges and n the number of vertices. In other
words, k - n must be even, which is possible only if n is even when k is odd.

Q14:Letv = [dy,dy, ..., dy] and w = [wy, wy_1, ..., wy, w1}, where w; =
n — 1 —d;. Show that v is graphic if and only if w is graphic.

Suppose v is the degree sequence of G = (V,E), where V.= {1,2,...,n}. It is easy
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to see that w is the degree vector of the complement of G. Thus v is graphic if and
only if w is graphic.

Q 15: Show that there is no simple graph with six vertices of which the de-
grees of five vertices are 5, 5, 3, 2, and 1.

Suppose there is a simple graph G, and let k be the degree of the sixth vertex. The
sum of the 6 degrees has to be even and k < 5. As a consequence, k € {0,2,4}.
If k = 0, then the degree sequence of Gis d = [5,5,3,2,1,0]. However, d is not
graphic. If k = 2, we have d = [5, 5, 3, 2, 2, 1], which is also not graphic. Finally,
with k = 4 we have d = [5, 5, 4, 3, 2, 1], which is, again, not graphic.

Q16: Find kif [8,k,7,6,6,5,4,3,3,1,1, 1] is graphic.

We need merely test the cases k = 8 and k = 7. It turns out that only for k = 7 we
have a graphic sequence.

Q 17: Show that an ordered sequence of nonincreasing numbers in which no
two numbers are equal cannot be graphic.

Consider the sequence d with k elements in which each element is a nonnegative
integer. If no two elements are equal, d = [k — 1,k —2, ..., 1,0]. Simply remov-
ing the first element and subtracting 1 from the rest, leaves us with —1 for the last
element. Therefore, d cannot be graphic.

Q 18: Show that in a simple graph, there are at least two vertices with equal
degrees.

By contradiction: if no two vertices have the same degree, the degree sequence will
consist of numbers that are strictly decreasing. Such a sequence is never graphic.

Q 19: Show that there exists a simple graph with 12 vertices and 28 edges
such that the degree of each vertex is either 3 or 5. Draw this graph.

We first compute how many vertices would have degree 3. Let this be k. We then
know that y"6(v) = k-3+4 (12 —k) -5 = 2-28 = 56. This gives us k = 2.
The degree sequence of G is thus equal to [5,5,5,5,5,5,5,5,5,5,3,3]. Using
the Havel-Hakim algorithm, we indeed find that this sequence is graphic. A graph
corresponding to this sequence is the following.
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Q 20: Show that there exists a simple graph with seven vertices and 12 edges
such that the degree of each vertex is 2 or 3 or 4.

Suppose there are k vertices of degree 2 and | vertices of degree 3. Then the only
solution in positive integers of the equation 2k + 31 +4(7 —k —1) =24isk =1
and | = 2. Thus if there is a graph with the desired property, it should have one
vertex of degree 2, two vertices of degree 3, and four vertices of degree 4, giving
a unique degree sequence d = [4,4,4,4,3,3,2]. It is easily verified that this
sequence is indeed graphic.

Q 21: Prove that if u is a vertex of odd degree in connected graph G, then
there exists a path from u to another vertex v of G where v also has odd
degree.

There are several ways to prove this theorem. Because we know that the number of
odd-degree vertices is even, and because G is connected, there is at least one other
vertex v with odd degree, and thus an (u, v)-path between the two.

Another proof is by constructing the longest (u,v)-path originating in u to any
other vertex v in G. Then consider the graph g* = G — P. Because the degree of
u was odd, it will be even in G*. Likewise, because we are removing two edges for
each intermediate vertex w on P, if the degree of w was odd in G, it will remain
odd in G*, and likewise, remains even if it was even in G. If the degree of v was
even, it will become odd, implying that the number of odd-degree vertices in G*
will increment by one, in turn meaning that G* would have an odd-numbered of
odd-degree vertices. That is not possible, and we conclude that the degree of v must
have been odd.

Q 22: Let d(u,v) denote the length of the shortest (1, v)-path in a connected
graph G. Prove that d satisfies the triangle inequality: for any u,v,w €
V(G) :d(u,v) +d(v,w) > d(u,w).

Let P be a shortest (u,v)-path and Q a shortest (v, w)-path. Clearly, a shortest
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(u, w)-path will have the same or less edges than the concatenation of P and Q,
meaning that d(u,w) < d(u,v) + d(v, w).

Q 23: Show that every simple graph with 7 vertices is isomorphic to a sub-
graph of the complete graph K.

Let G be a graph with vertex set V(G) = {v1,v2,...,vn}. Let K, have vertices
{uy,uy, ..., uy}. Construct the subgraph H C K,, such that (u;, uj> € E(H) iff
(vi,vj) € E(G). Clearly, H is isomporphic to G.

Q 24: Prove that if two graphs G and G* are isomorphic, then their respective
ordered degree sequences should be the same.

Let ¢ be the one-to-one mapping by which G and G* are known to be isomor-

phic. Consider vertex u from G and its adjacent vertices vy, ...,vy. By defini-
tion, each edge e; = (u,v;) incident with u in G is mapped to a unique edge
*

ef = (¢p(u),¢(v;)) in G*. Because each edge e is incident with ¢p(u), we must

have that 5(u) < 6(¢(u)).

Now consider a vertex v* € V(G*) that is adjacent to ¢(u). By definition of
isomorphism, we know that the edge e* = (¢p(u),v*) must uniquely map to an
edgee = (o~ (p(u)), ¢~ (v*)) in G, where ¢~ denotes the inverse mapping of
¢. Because ¢ is a one-to-one mapping, we also know that ¢~ (p(u)) = u, and
thus that e = (u, ¢~ (v*)). In other words, every edge incident with ¢(u) in G*
will be incident with u in G. This means that 5(¢p(u)) < 5(u).

We conclude that 5(u) = 5(¢p(u)) for all vertices of G, implying that the ordered
degree sequences of G and G* should be the same.

Q 25: Show thatif two graphs G = (V,E) and G* = (V*, E*) are isomorphic,
then |V| = |V*| and |E| = |E*|.

If G and G* are isomorphic, there is a one-to-one mapping ¢ : V. — V* such
that for every edge e € E with e = (u,v), there is a unique edge e* € E* with
e* = (¢p(u),¢(v)). This means that |E| < |E*|, but because ¢ is one-to-one, we
also have that ¢~ will map every edge of E* to a unique edge in E. Therefore,
|E| = |E*|. Because each edge is uniquely mapped, we also have that |V| = |V*|.

Q 26: Show that two graphs G and G* each having n vertices and m edges,
need not be isomorphic.

The following two graphs can never be isomorphic, yet have the same number of
vertices and the same number of edges.
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Q 27: Show that two simple graphs are isomorphic if and only if their com-
plements are isomorphic.

Let Gy = (Vy,Eq) and Gy = (Va, Ep) be two simple graphs isomorphic under
the one-to-one mapping ¢. Extend Gy by adding an edge e = (u,v) between two
nonadjacent vertices, along with the edge ¢’ = (p(u), ¢(v)). Obviously, ¢p(u) and
¢(v) were also nonadjacent in Gy, and again both graphs Gy + e and G, + e* are
isomorphic under ¢. Continue until Gy and G have been extended to a complete
graph G* and Gj, respectively. Clearly, Gy 9<f
Gy, which in turn is isomorphic with G5 — Go.

Ky — Gy is isomorphic with G} —

Q 28: Find a self-complementary graph G having four vertices.

The number of edges in the complete graph with four vertices is 6. So if G is a self-
complementary graph with four vertices, it should have three edges. Consider the
following two versions of Ky, each with a thick-edged subgraph, and its thin-edged
complement. Clearly, only the second one is self-complementary.

Q 29: Find two self-complementary graphs having five vertices.

We know that |E(Ks)| = (3) = 10. In other words, the graph we are looking
for should have five edges. Consider the following two versions of Ks, each with a
thick-edged subgraph H and its thin-edged complement. In both cases, H is self-
complementary.
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Q 30: Prove by induction that a complete graph with n vertices contains
n(n—1)/2 edges.

Obviously, for Ky the statement is true. Assume the that it holds for the complete
graph on k > 1 vertices. Consider Ky 1 and remove an arbitrary vertex v. Clearly,
Ky, 1 — v is isomorphic with Ky, and therefore has k(k — 1) /2 edges. Vertex v had
degree k, so that the total number of edges in Ky q is equal to k(k —1)/2 +k =
(k+1)k/2.

Q 31: Compute the number of edges in K, and in Ky .

There are different ways to do this. First, there are exactly () ways of joining
two vertices in Ky, which is exactly n(n — 1)/2. Alternatively, let V(K,) =
{v1,v2,...,0n}. We have n — 1 vertices to join vy to, a remaining n — 2 for vy,
and, in general, a remaining n — i for v;. Therefore, the total number of edges is
m—-1)+n—-2)+---+1=nn-1)/2.

For Ky, with partitioned vertex set V(K n) = V4 U Vy, we need merely consider
the, say, m elements of V1. Each vertex can be joined with one of the n vertices of
Vs, leading to a total of |Vi|-n = m - n edges.

Q 32: Use the fact that }"5(v) = 2|E| to find the size of K;, and K, ,.

Let the number of edges of K, be M. The degree of each vertex is (n — 1). There
are n vertices. Thus the sum of the degrees of the n vetices is n(n — 1), which is
2M. Hence M = n(n — 1) /2. For Ky, , let the number of its edges be M. Assume
V(Kmn) = V1 UV, with |Vy = m| and |V, = n|. The degree of each vertex in
V1 is n, and the degree of each vertex in V, is m. The sum of the degrees of the m
vertices in V7 is therefore m - n, while the sum of the degrees of the n vertices in V,
is also n - m. Therefore, Y 6(v) =2M =2 -m - n, so that M = m - n.

Q33:Showthat(n—1)+ (n—2)+(n—3)+---+14+0=n(n—-1)/2

The easiest way to do this is by induction, starting with n = 1, for which equality
clearly holds. Assume it also holds for any k > 1. Consider the case k + 1. We then
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have:
(k+1) =1+ (k+1)—2+---+14+0=
k+ ((k=1)+(k—=2)+---+1+0) =
k+k/(k—1)/2=
(k+1)k/2

Q 34: Show that the number of vertices in a self-complementary graph is
either 4k or 4k + 1, where k is a positive integer.

Consider a self-complementary graph G = (V,E) with n vertices and m edges.
Since G is isomorphic to its complement, both G and its complement have the same
number of edges. Now every edge in the complete graph with V as the set of vertices
is either an edge in G or an edge in its complement. Thus m +m = n(n —1)/2,
showing that n(n — 1) = 4k, where k is a positive integer. So n = 4k or 4k + 1.

Q 35: Show that every graph has an even number of odd-degree vertices.

Suppose the sum of the degrees of the odd vertices is k and the sum of the degrees of
the even vertices is 1. The number | is even, and the number k + 1, being 2 - |E|, is
also even. So k is necessarily even. If there are |V,q4| odd-degree vertices, k is the
sum of |V,44| odd numbers. So k is even.

Q 36: Construct two nonisomorphic simple graphs with six vertices with
degrees 1,1, 2, 2, 3, and 3. What is the number of edges in each graph?

Since the sum of the degrees is 12, the number of edges must be 6. Two nonisomor-
phic graphs are as follows:

Q 37: Show that if G and G* are isomorphic graphs, the degree of each vertex
is preserved under the isomorphism.

Let G = (V,E) and G* = (V*, E*) be isomorphic under the one-to-one mapping
¢. The only edges incident with ¢(v) are edges joining ¢p(v) and ¢(u;), where
u; € N(v). So the degree of f¢(v) is the same as that of v.

Q 38: Show that it is not possible to have a group of seven people such that
each person in the group knows exactly three other people in the group.

Reformulating this problem in terms of graphs, we need to show that it is impossible
to have a 3-reqular graph with seven vertices. This is indeed impossible, because
every k-regqular graph, where k is odd, must have an even number of vertices.
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Q 39: Prove that in any group of six people, there will be either three people
who know one another or three people who do not know one another.

Reformulate this problem into graph theory as follows: show that for any graph G
with 6 vertices, K3 will be a subgraph of G or a subgraph of G. Consider vertex
v € V(G). We know that 5 (v) > 3, or otherwise 65(v) > 3. Assume 5g(v) = 3
in G. If there is any edge joining two of v's neighbors in G, we have identified K3 as
a subgraph of G. If there is no such edge between any two of these three neighbors,
we have identified K3 as a subgraph in G.

Q 40: Show that if a bipartite graph G = ({Vy, V»}, E) is regular, then |V;| =
[Val.

Assume that the degree of each vertex is k. Clearly, |[E(G)| = k- |V1| = k- |V,|.
This means that |V1| = |Va|.

Q 41: Construct two nonisomorphic cubic (i.e., 3-regular) graphs each with
six vertices.

Q 42: Find the maximum number of edges in a bipartite graph.

Let G = ({V4, o}, E) be a bipartite graph with |Vi| = my and |V,| = my. The
number of edges in G cannot exceed my - my, which is a maximum when my; = my.
So the maximum number of edges is (n/2)? when G has n vertices.

Q 43: A k-cube is a simple connected graph with 2 vertices. Each vertex
is represented by a k-bit number. Let d(u,v) be defined as the number of
positions in which u# and v have a different bit. Two vertices u and v are
joined if and only if d(u,v) = 1. Show that a k-cube is a k-regular bipartite
graph, and find the number of edges in a k-cube.

To show that a k-cube is bipartite, we simply construct the set V1 of vertices rep-
resented by the k-bit number of all zeroes (denoted as 0), and all k-bit numbers u
for which d(0,u) is even. Likewise, let V, consist of all vertices v for which d(0,v)
is odd. Clearly, there can be no edge between vertices from Vi, nor can there be
edges between vertices from Va. We also see that | V| = |Va|. With 2X vertices, this
means that |Vy| = |Va| = 25=1. Each vertex will be joined with k other vertices,
i.e., its degree will be k. We conclude that a k-cube has 1 Y 6(v) = (2¥) - k/2 edges.
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Q 44: Find the fewest vertices needed to construct a complete graph with at
least 1000 edges.

If the number of vertices is n, we have the inequality n(n — 1)/2 > 1000. There-
fore, n > 46.

Q 45: Test whether [5, 4,3,3,3,3,3, 2] is graphic. If it is graphic, draw a
simple graph with this sequence as the degree sequence.

1. v=1[54,3,3,33,3 2 andv; = [3,3,2,2,2,2,2]
2. 0=103,3,22222 ad v, = [2,2,2,2,1,1]

3. 0=1222211ado; = [2,1,1,1,1]

4 v=12,1,1,1,1 and v, = [1,1,0,0]

5. v=11,1,0,0] and v; = [0, 0, 0]

Q 46: Test whether [6, 6, 5, 4, 3, 3, 1] is graphic.

1. v=16,6,54,3,3,1 andv; = [5,4,3,2,2,0]
2.v=154,3,22,0 and v1 = [3,2,1,1, — 1] Since we obtain a sequence
with a negative element, we conclude that the given sequence is not graphic.

Q 47: Find the complements of K, and Ky ;.

Obviously, the complement of K, is the empty graph on n vertices, i.e., E(K,) = @.
The complement of Ky, , consists of two disjoint subgraphs: Ky, and K.

Q 48: Show that if every edge in a graph joins an odd-degree vertex and an
even-degree vertex, the graph is bipartite. Is the converse true?

Let V consist of all odd-degree vertices and V, of all even-degree vertices. Clearly,
there is no edge between any two vertices from Vi or from V,, hence the graph is
bipartite. The converse is obviously not true: simply consider K3 3.

Q 49: Show that every subgraph of a bipartite graph is also bipartite.

Let G = ({V1, o}, E) be a bipartite graph and H C G. Clearly, V(H) C V(G),
in particular, we can partition V(H) into the sets V(H) N Vy and V(H) NV, H
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will certainly not contain an edge that joins any two vertices belonging to the same
subset.

Q 50: Prove that for any graph G, x(G) < A(G) < min{é(v)|v € V(G)}

That A(G) < min{d(v)|v € V(G)} is easy to see. Consider a vertex u with
minimal degree, that is, 5(u) = min{é(v)|v € V(G)}. If we simply remove the
8(u) edges incident with u, then u will become isolated, and certainly the resulting
graph will have at least one more component then it had before (namely the one
consisting only of u).

To prove that k(G) < A(G), consider a graph G with A(G) = k and let E* =
{e1,e,...,ec} be a minimal edge cut of G, with e; = (u;,v;). Let U denote the
set of vertices {uq, ..., u} and V the set {vy,...,v;}. Note that in this case, the
vertices in either set need not be distinct. The graph G — E* will fall apart into
exactly two components, say Gy and Gyp. If Gy contains a vertex u distinct from
any u; then clearly removing all vertices in U will disconnect u from any vertex in
Gy, so that k(G) < k.

If there is no such vertex u, then assume that V(Gy) = U. Consider vertex uj.
We know that uy is adjacent to dy vertices from Gy, and each of these neighbors in
G is adjacent to a vertex from V. Let E be a set of edges from E* joining vertices
from the dy neighbors of uy and exactly one vertex from V. Likewise, let E5 be
the dy edges from E* incident with uy. Obviously, dy +dp = |E} U E5| < |E¥|.
Also, the dy + dp neighboring vertices of uq form a vertex cut. This also means that
k(G) < dj +dy < |E*| = A(G), completing the proof.

Q 51: Construct a graph for which «(G) < A(G) < min{é(v)|v € V(G)} is

strict.

Consider the following graph. Clearly, 6(1) = 4 and is also the minimum vertex
degree of G. Furthermore, the set {(2,4),(2,5),(3,5)} forms a minimal edge cut
of size 3, whereas the set of vertices {2,5} forms a minimal vertex cut of size 2.

Q 52: Provide an algorithm for checking whether an undirected graph G is
connected.

Let R¢(u) denote the set of reachable vertices from u found after t steps. Further-
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more, let N (v) denote the set of neighbors of v, that is, N(v) = {w € V(G)|3(v,w) €
E(G)}.

1. Set t < 0and Ry(u) < {u}.
2. Construct the set Ry1q(u) <= Re(u) Uper,(u) N(0).

3. If Ryp1(u) = Re(u), stop: R(u) < Ry(u). Otherwise, increment t and
repeat the previous step.

Q 53: Prove that the Harary graph Hy ,, is k-connected.

Let us first consider the case that k is even. Our proof is completed if we can show
that there is no vertex cut with fewer than k vertices. To this end, let us assume
that such a set W does exist. If we can then prove that this assumption can never
hold, we will have completed our proof (we come back to this method of proving a
theorem below).

To this end, let vertices i and j belong to different components of Hy,, — W (i.e.,
G[V(Hy,,)\W]). Consider the set N;_,; of left-hand neighbors of i, including
i {i,i+1,...,j—1,j}, and likewise its right-hand neighbors Niej = {j,j+
1,...,i—1,i}. In both cases, addition is taken modulo n. Let Wisj def W Nij
and Wi, def W Ni.j (meaning that W = W;_,; U W;_;). We know that [W| <
k, so we must have that either |W;_,;| < k/2 or [W;_;| < k/2. Assume that
|Wi%]'| <k/2

Now consider an arbitrary vertex u in Hy ,, — W, lying on, say, segment S1. We
know that u is adjacent to k/2 consecutive vertices in either direction. As a con-
sequence, removing less than k/2 vertices as is done through W;_; will still allow
us to reach any vertex v on segment Sy. In other words, Hy,, — W will remain
connected, contradicting our assumption that W was a vertex cut.

Q 54: Prove that for a connected acyclic simple graph G with n vertices,
|[E(G)| =n—1.

We prove this lemma by induction on the number of vertices. Clearly, when n =1
there can be no edges and the lemma is seen to hold. Now assume the lemma holds
for all acyclic simple graphs with less than n vertices. Let H be an acyclic simple
graph with n > 2 vertices, and edge (u,v) € E(H). If we remove this edge,
then the result will be two separate subgraphs Gi and Gy, for otherwise (u,v)
was part of a cycle. Both subgraphs are acyclic, each with less than n vertices, so
that |[E(Gy)| = |V(G1)| — 1 and |E(G)| = |V(Gz)| — 1. Because we have not
removed any vertices, we know that

|E(H)| = [E(G1)|+ [E(G2)[ +1 = [V(G1)| =1+ [V(Gp)| =1+1=n—1

which completes the proof.
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Q 55: Prove that for a plane graph G with n vertices, m edges, and r regions,
we have thatn —m +r = 2.

The proof is by induction on v, the number of regions. If r = 1, then there is only
a single region, which means there cannot be a region enclosed by edges of G. In
other words, G must be acyclic, in which case m = n — 1 and thusn —m +r =
n—(n—1)+1=2. Forr =1 the formula is therefore seen to be true.

Now assume the formula is true for all plane graphs with less than r regions, and
let G be a plane graph with r > 1 regions. Choose an edge e (which is not a cut
edge) and consider the subgraph G* = G —e. As e was part of a cycle, we will
have merged two regions, reducing the total number of regions by 1. In that case,
we know that Euler’s formula is true, and as a consequence, |V (G*)| — |[E(G*)| +
(r —1) = 2. Considering that |V(G*)| = |V(G)| and |[E(G*)| = |E(G)| —1,
we now obtain |V(G)| — (JE(G)| —1)+r—1 = |V(G)| — |[E(G)|+r = 2,
completing our proof.

Q 56: Prove that for any connected simple planar graph G with n > 3 ver-
tices and m edges, we have that m < 3n — 6

Consider a region f in any plane graph of G. For any interior region, let B(f)
denote the number of edges by which f is enclosed, i.e., the length of its “border.”
Obviously, B(f) > 3 for any interior region. However, with n > 3 we also have
that the exterior region is “bounded” by at least 3 edges. Therefore, if there are a
total of r regions, then clearly Y B(f) > 3r. On the other hand, it is not difficult
to see that Y B(f) counts every edge in G once or twice, and hence ) B(f) < 2m,
so that we obtain 3r <Y B(f) < 2m, and thus r < %m From Euler’s formula we
then derive that m = n+r —2 < n—l—%m—Z,sathatm <3n-—6.

Q 57: Show that K5 is nonplanar.

Withn = |V(Ks)| =5and m = |E(Ks)| = (g) = 10, we have that m £ 3n — 6,
so that Ks cannot be planar.

Q 58: Show that the complete bipartite graph K3 3 is nonplanar.

Each interior region f in any Ky, will necessarily be enclosed by an even number
of edges. If B(f) denotes the number of edges enclosing interior region f, and
realizing that also the exterior region will be “bounded” by at least four edges, we
find that Y B(f) > 4r, where r is the total number of regions. Because edges are
counted twice, we should have that 4r < 2m = 18. However, Euler’s formula tells
usthatr =2 —n+m =2—6+9 =5, so that 4r £ 18. Therefore, K3 3 cannot
be planar.
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Q 59: Show that for any simple undirected graph with m egdes there are 2™
possible orientations. What can we say about the number of orientations for
nonsimple graphs?

Every edge can be ordered in two possible ways. Because the graph is simple, we
know there are no loops nor parallel edges. Hence, there are 2" different combina-
tions of ordering the edges, and thus 2™ different orientations. When dealing with
a nonsimple graph, the situation is more complicated. First, each loop will have
only one distinguishable orientation. If we have, say, two edges ey = (u,v) and
ep = (u,v), then, in principle, we could have four different orientations:

® O has arcs {a; = <ﬁ>,ﬂ2 = <ﬁ>}
i, 0),ay = (0,11)}
o,1), a2 = (i1, D) }

{
® O3 has arcs {a1 = (v,
(0,1),a2 = (0,11)}

® O, has arcs {a; =

® Oy has arcs {a; =

Arguably, orientation Oy and O3 can be considered identical. Note that when edges
have weights, we would need to take this into account when considering whether or
not two orientations are different.

Q 60: In Dijkstra’s algorithm, we set R(u) = S¢(u) Uyes,(4) N(v), and later
consider vertices from Ry(u)\S;(#). Why can’t we directly consider the set
UveSt(u)N(v)?

The answer is quite simple when realizing that a set N(v) may also contain ver-

tices from Si(u). In other words, Ry(u)\S¢(u) # Uyes,u)N(v). For Dijkstra’s
algorithm, it is important to consider only vertices outside the set S¢(u).

Q 61: Apply Dijkstra’s algorithm for vertex vy from Figure 3.4 and com-
pute the weight of the resulting rooted tree T(v4). Find an alternative tree
T*(v4) that also gives shortest paths originating from vy, but with a different
weight, that is, w(T (v4)) # w(T*(v4)).

The following figure shows two trees rooted at vy, both containing shortest paths
from vy to any other vertex. However, their weights are different, as can be readily
observed.
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Q 62: Change Dijkstra’s algorithm so that it can be applied to weighted,
strongly connected directed graphs.

Perhaps not surprisingly, Dijkstra’s algorithm will also work for strongly connected
digraphs, provided that we consider N (v) to be the set of vertices w for which there
is an arc (0,W). The algorithm is otherwise unaltered.

Q 63: Let G be an undirected graph and € 9¢f {Ey,..., E;} a partitioning of
its edge set. Let V; be the collection of end points of edges from E;. Prove
that £ is an edge coloring if and only if |V;| = 2 - |E;].

Clearly, if |V;| = 2 - |E;|, then this can mean only that all edges in E; have different
end points, and thus that no two edges have an end point in common. By definition,
& is an edge coloring of G.

Likewise, if € is an edge coloring, no two edges in any E; will share a vertex, mean-
ing that necessarily |V;| = 2 - |E;|.

Q 64: A manufacturer of chemical goods is faced with the problem that cer-
tain goods cannot be stored at the same place due to the danger of unwanted
reactions. What he seeks is a storage scheme such that goods that cannot be
located at the same place are indeed separated. Provide a graph-theoretical
model to solve this problem.

Every good is modeled as a vertex. If two goods cannot be stored at the same loca-
tion, we join their associated vertices. What we are then seeking is a vertex coloring
of the resulting graph.

Q 65: Design a simple algorithm by which we can identify the components
of a graph.

Consider a graph G. Start with an arbitrary vertex v € V(G) and set the current
label | <+ 1.

1. Set V; equal to {v}.

2. Execute Algorithm 3.1 to find all vertices R(v) that can be reached from v
and add each vertex in R(v) to V).

3. Increment I: | <— | 41, and choose an arbitrary vertex v again, but now from
the set of vertices not yet inspected: V(G)\ Ug;% Vi. If no such vertex exists,
stop. Otherwise, continue with the first step.

The effect is that all vertices belonging to the same component will have the same
label.
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Q 66: Prove that there exists an orientation D(G) for a connected undirected
graph G that is strongly connected if and only if A(G) > 2. In other words,
G cannot be 1-edge-connected.

Let us first consider a strongly connected orientation D of G. We prove, by con-
tradiction, that G is 2-edge-connected. To that end, assume that G is not 2-edge-
connected and that the removal of e = (u, v) disconnects G, that is G — e falls into
two components Gy and G,. Clearly, we can assign only one orientation to e, that
is, D(G) will either contain the arc a = (i, %) or the arc a’ = (v, 1l). Because all
paths in G from a vertex x € V(Gy) toavertex y € V(Gy) will contain e, it is also
clear that with either orientation of e, D(G) cannot be strongly connected, which
violates our initial assumption. Hence, G cannot be 1-edge-connected and therefore
is (at least) 2-edge-connected.

Now consider a 2-edge-connected undirected graph G. We construct an orientation
D of G that is strongly connected. We know that every edge of G lies on a cycle.
Consider the cycle C = [v1, vy, ..., Uy, v1]. We replace each edge (v;,vi 1) with
an arc (07, 0.3) and edge (vn,vo) with arc (v,,v1). Any edge (v;,v;) between
nonadjacent vertices on C can be oriented arbitrarily. This situation is shown in
(a) below. Clearly, if V(C) = V(G) we will have constructed a strongly connected
orientation of G.

Assume V(C) # V(G) so that we have not yet covered all vertices of G. Let w be
such a vertex, i.e., w ¢ V(C). Because G is 2-edge-connected, we know that there
are two edge-independent paths connecting w to vy, as shown (b) above. Without
loss of generality, we may assume that these two paths partly overlap with C. One
path, Py, will have the form [w = wy, wy, ..., Wy, Vj, Vi1, -+ v1]. The other
will necessarily have the form [w = Wy, Wy, ..., W}, vj, Vi—1, - .., V1], where 1 <
i < j < n. We then transform each edge (wy, wy1) to the arc (Wy, Wept), and
each edge (Wy, W, 1) to (W1, Wy). Again, edges between nonadjacent vertices
on Py and P, may be oriented arbitrarily. It should be clear that all vertices in
W = V(C)UV(Py) U V(P,) are connected through two edge-disjoint paths in D.

If there is still a vertex in V(G)\W, we simply repeat the procedure until all edges
have been provided with an orientation. The result will be a strongly connected
orientation of G.

Q 67: Any orientation of the complete graph with vertex set {1,2,...,n}
is a tournament. A tournament is transitive if there is an arc from i to k
whenever there is an arc from i to j and an arc from j to k for each i, j, and
k. Construct both a transitive tournament with four vertices and one that is
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not transitive.

Q 68: Prove that in a digraph, the sum of the outdegrees of all the vertices is
equal to the number of arcs, which is also equal to the sum of the indegrees
of all the vertices.

The outdegree of a vertex v is the number of arcs having v as their tail. So when we
add all the outderees, each arc is counted exactly once. Likewise, when the indegrees
are summed, each arc is counted exactly once. Thus the sum of the outdegrees and
the sum of the indegrees are both equal to the total number of arcs in the digraph.

Q 69: Prove that every walk in a graph between vertices v and w contains
a path between v and w, and every directed walk from v to w in a digraph
contains a directed path from v to w.

Let W be a walk between v and w. If v = w, there is the trivial path with no edges.
Therefore, assume that v and w are not the same vertex. Suppose W is the walk
[v = vy, v1, ..., 0y = w|. It is possible that the same vertex occurs more than
once, that is, it may be that v; = v;. If no vertex of the graph appears more than
once in the sequence, we have a path between v and w. Otherwise, there will be at
least one vertex that appears as v; and vj in the sequence with i < j. If we remove
the terms vy 1,042, ..., vj from the sequence, we still have a walk between v and
w that contains fewer edges. We continue this process until each repeated vertex
appears only once in the walk; at that stage, we have a path between v and w. The
proof in the case of directed walks is similar.

Q 70: Show that a graph G is bipartite if and only if x(G) =2

In the bipartite graph G = ({V1, Va}, E), assign the same color (say red) to each
vertex in V1. Then assign a unique color other than red (say blue) to each vertex in
V. Thus the chromatic number of G is 2. On the other hand, suppose the chromatic
number of G = (V, E) is two. Let V; be the set of vertices such that each vertex in
V1 has the same color. Let V, = (V\V1). Then every edge in G is between a vertex
in V1 and a vertex in V,, meaning that G is bipartite.
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Q 71: Construct the line graph of Kj.

The following graph shows the relationship between K4 and its line graph.

2 3

1 \’ » 4

6 5

Q 72: If v is the vertex in the line graph L(G) that corresponds to the edge
joining vertex x and vertex y in G, find the degree of v in L(G).

dr(c)(v) = 6c(x) +dc(y) —2

Q 73: How many vertices does L(K,) have? And what about the number of
edges?

It should be clear that |V (L(K,))| = |E(Ky)| = (3). We can compute the number
of edges by taking a look at the vertex degrees in L(Ky). An edge joining two
vertices u and v in K, is incident with 6(u) +6(v) —2 = (n—1)+(n—1) -2 =
2(n — 2) other edges. In other words, the degree of a vertex in L(K,,) is equal to
2(n—2). Hence, the total number of edges in L(Ky) is 3 Y.6(v) = In(n—1)(n—
2).

Q74: Let G be a simple graph with n vertices. Compute the number of edges
in L(G).

We know that each edge e = (u,v) in G, we'll have a vertex in L(G). In particular,
dr(c)(e) = o(u) +6(v) — 2. If we consider all edges in G, it is not difficult to see
that wehn computing the vertex degree of those edges in L(G), an end point u will

be counted exactly 5(u) times in the summation Y1 () 6 (w). With n vertices in
L(G), this means that

Y bueyle) = Y (66(u) +66(0) —2) = ¥ (66 (u))? —2-n

e=(u,v)

We conclude that |[E(L(G))| = —n + %ZuEV(G) (5(;(1!))2'
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Q 75: Suppose G is a simple graph with five vertices with degrees 1, 2, 3, 3,
and 3. Find the number of vertices and edges in L(G).

The sum of degrees is 12, so G has six edges. Thus L(G) has six vertices. The
sum of the squares of the degrees is 32. Hence, the number of edges in L(G) is
(32—-12)/2 = 10.

Q 76: Show that there is no graph G such that L(G) = Kj 3.

Since K13 = ({V1, Va}, E) has four vertices, if there is a graph G it should have
four edges. Suppose these four edges are a, b, ¢, and d, and assume that Vi = {a}
(and Vo = {b,c,d}). For G, we would require that edge a has an end point that is
also an end point of b, c and d, while at the same time no two of these three edges
are allowed to have an end point in common.

Q 77: Construct an example to show that if L(G) and L(H) are isomorphic,
it is not necessary that G and H are isomorphic.

It is easy to see that L(K3) = Kz = L(Kj3), yet obviously, K3 and K; 3 are not
isomorphic.

Q 78: Show that

(a) a graph G is isomorphic to its line graph if and only if the degree of each
vertex is 2

(b) the line graph of a connected graph G is (isomorphic to) Kj, if and only
if G is (isomorphic to) K ,,, when n > 3.

(a) If the degree of each vertex of G is 2, the degree of each vertex of L(G) is also 2,
and G and L(G) both have the same number of vertices and the same number
edges. So G and L(G) are isomorphic. Conversely, if both G and L(G) are
isomorphic, they both have the same number of vertices and same number of
edges, and the degree of each vertex is 2.

(b) If n > 3, L(Ky,,) = Ky. Conversely, if L(G) = Ky, G has n edges, and all
these edges have exactly one vertex in common since the degree of each vertex
inKyis (n—1).

Q 79: Show that a digraph D = (V, A) is strongly connected if and only if
for every nonempty subset X C V there exists an arc (x,7) from a vertex
x € Xtoavertexy € V\X.

Suppose D = (V, A) is strongly connected and X is an arbitrary nonempty subset
of V. Let u be an arbitrary vertex in X and y be an arbitrary vertex in Y = V\X.
Then there is at least one directed path P from u to v that will have an arc <9ﬁ>,
wherex € Xandy € Y.
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Conwersely, assume that D is a digraph that satisfies the property. Suppose D is
not strongly connected and u and v are two vertices such that there is no directed
path from u to v in D. Let X be the set of all vertices that are terminal vertices of
directed paths that originate from u. By assumption, X is a proper subset of V. So
there exists an arc e from vertex x € X to vertex y € V\X. Now x is the terminal
vertex of a directed path P from u, and this path can be enlarged into path P* from
u to y using arc e. Thus the vertex y cannot be in V\ X, which is a contradiction.

Q 80: Show that a vertex v of a connected graph is a cut vertex if and only if
there exist two distinct vertices u and w such that every path between these
two vertices passes through v.

Let v be a cut vertex in a connected graph G. Then G — v has at least two compo-
nents. If we choose u from one component and w from another component, any path
in G between u and w has to pass through v. On the other hand, suppose there are
two vertices in a connected graph such that every path between these two vertices
passes through vertex v. If this vertex is deleted, there cannot be a path between
these two vertices in the resulting graph. In other words, this deletion makes G
disconnected. So v is a cut vertex of G.

Q 81: Show that any nontrivial graph has at least two vertices that are not
cut vertices.

We may assume without loss of generality that graph G is connected. Let P be a
shortest path of maximum length in G, with end points u and v. Suppose u is a cut
vertex. Then G — u has at least two components. Let w be a vertex in a component
that does not contain v. In G, there is a path between v and w. Since u is a cut
vertex, this path has to pass through u, implying that d(v,w) > d(u,v), which
contradicts the maximality of d(u,v). So u is not a cut vertex. Similarly, v is also
not a cut vertex.

Q 82: Show that an edge of a connected graph is a cut edge if and only if
there exist vertices v and w such that every path between these two vertices
contains this edge.

The deletion of a cut edge from a connected graph creates two connected components
of the graph, and any path in the original graph joining a vertex in one component
and a vertex in the other component contains the cut edge. On the other hand, if
there are two vertices such that every path between these two vertices contains the
same edge, the deletion of this edge will disconnect the graph.

Q 83: Show that an edge is a cut edge if and only if no cycle contains that
edge.

Assume without loss of generality that the graph under consideration is connected.
If e is a cut edge joining two vertices u and v and if there is a cycle that contains
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this edge, there is a path in the graph between these two vertices other than the edge.
Since the graph is connected, every vertex in the graph is connected to every vertex
in the cycle. So the deletion of e will not disconnect the graph, which contradicts
that e is a cut edge.

Conwversely, let G be a connected graph and e be an edge joining u and v such that no
cycle contains this edge. Suppose e is not a bridge. Then G — e is still a connected
graph that has a path joining u and v. This path and the edge e together constitute
a cycle containing e in G, contradicting the hypothesis.

Q 84: Show that in a graph with n vertices, the length of a path cannot exceed
(n — 1) and the length of a cycle cannot exceed n.

If u and v are two vertices, the path between u and v can have at most (n — 2)
distinct vertices. So the maximum length of the path is (n — 1). Likewise, the
maximum length of a cycle is n.

Q 85: Show that if a simple graph G with n vertices and m edges has k com-
ponents, m < (n—k)(n —k+1).

(a) The conclusion remains valid even if we assume that each component is a com-
plete graph. Suppose H;, and H; are two such components with n; and n; vertices,
where n; > n; > 1. If we replace these two components by two complete graphs of
(n; +1) and (n; — 1) vertices, respectively, the total number of vertices will remain
unchanged but the number of edges will increase by n; — n; + 1. So the number of
edges of a simple graph of with n vertices and k components will be a maximum if
there are (k — 1) isolated vertices and one component that is a complete graph with
(n — k + 1) vertices with 3 (n — k)(n — k + 1) edges.

Q 86: Find the minimum number of edges in a k-connected graph.

If the graph G with n vertices and m edges is k-connected, the degree of each vertex
is at least k and so 2 - m is at least n - k.

Q 87: Draw a k-connected graph with 7 vertices and m edges such that 2 -
m=mn-kwhen (a)k=1and (b) k = 2.

(a) Ky
(b) G=(V,E)withV ={1,2,3,4} and edges (1,2),(2,3),(3,4), and (4,1).

Q 88: Prove that a graph G is bipartite if and only if it contains no cycles of
odd length.

First assume G is bipartite with its vertex set V partitioned into subsets Vi and
Vo. Let C = [v1, 0, ..., vy = v1] be a cycle of length n. Assume that v1 € V.
Clearly, we must have that vy € V;, and thus that v3 € V1, and so on. In other
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words, each vertex vy; 1 € Vq and vy; € Vo, for 1 < i < n/2. Furthermore, we
know that v, = vy, meaning that v,y € V,. This is possible only if n — 1 = 2j
for some j, meaning that n is odd.

Without loss of generality, assume G is connected. Assume that G contains no cycle
of odd length. Let u be an arbitrarily chosen vertex vertex. Let Ry(u) be the set of
vertices reachable from u through a path of length k. If there is an i and j # i for
which Ro;(u) N Rojy1(u) is not empty, we have found a vertex v that is reachable
from u by means of path of even length, and another path of odd length, meaning
that we would have found an odd-length cycle. We conclude that the sets |J Ro; (1)
and \J Ryjy1 (u) are disjoint, meaning that G is bipartite.

Q 89: Show that the minimum number of time slots needed for the class-
scheduling problem is the value of x(G) of the associated graph G.

We first prove that we need at most x(G) slots to schedule all classes. From the
definition of chromatic number, we know that any two vertices with the same color
cannot be adjacent. This also means that the two classes associated with those two
vertices need not be taken by the same group of students. Hence, they can be sched-
uled at the same time, that is, for the same time slot. In general, all vertices with the
same color represent the set of classes that can be scheduled at the same time. This
means that x(G) slots are sufficient to schedule all classes.

We now prove that we need at least x(G) slots to schedule all classes. Suppose
that k < x(G) slots are sufficient. Classes in the same slot should be taught to
different groups. In the graph G, this means that the vertices representing those
classes should be nonadjacent. As a consequence, we should be able to use only k
different colors yielding a k-vertex coloring of G, which contradicts the fact that
X(G) is minimal.

Q 90: Show that for any (simple, connected) graph G, x(G) < A(G) + 1.

We prove that the theorem holds by induction on the number n of vertices of G. For
n = 1, we need to consider the complete graph Ky. Obviously, x(K;) = 1 and
A(K7) = 0, so that the theorem holds.

Now assume the theorem holds for all graphs on k > 1 vertices, and consider a
graph G with k + 1 vertices. Let vertex v € V(G) with §(v) = A(G). The
graph G* = G — v has k vertices, so there exists a vertex coloring C* of G* with
xX(G*) < A(G*) + 1 different colors. If A(G) = A(G*), then in the worst case,
the number of colors used in G* is x(G*) = A(G*) +1 = A(G) + 1. Considering
that v has A(G) — 1 neighbors, this means that there is a color available from the
ones used in G* that we can use for v and which has not been used for any of v’s
neighbors.

On the other hand, if A(G) > A(G*), then we can simply permit ourselves to
introduce a new color for v and use the ones from an optimal coloring of G* for all
other vertices. At worst, we will then have that x(G) = x(G*) +1 < A(G*) + 2.
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IfA(G*) < A(G), then the smallest value of A(G) for which this inequality is true,
is, of course, when A(G) = A(G*) + 1. Therefore, we know that A(G*) +2 <
A(G) + 1, so that we indeed have that x(G) < A(G) + 1.

Q 91: Show that every planar graph G has a vertex v with §(v) < 5.

For all planar graphs with n < 6 vertices, the theorem is obviously true. For planar
graphs with n > 6, we prove the theorem by contradiction. To this end, consider
a planar graph G for which n > 6. Let m be the number of edges of G. We know
that ey (c) 0(v) = 2m. Therefore, if there is no vertex with degree 5 or less, then
6n < 2m. In addition, we know that m < 3n — 6, and thus that 6n < 6n — 12.
Obviously, this is false, meaning that our assumption that there is no vertex with
degree 5 or less must be false as well.

Q 92: Show that for any planar graph G, x(G) < 5.

Let n = |V(G)|. For n = 1, the theorem is obviously true. Assume the theorem
holds for all planar graphs with k > 1 vertices and consider a graph G with k + 1
vertices. Let vertex v with 6(v) < 5 (we just proved that such a vertex exists),
and consider the graph G* = G — v. Because |V (G*)| = k, we know there exists
a 5-vertex coloring of G*, with, say, colors ¢y, . ..,cs. If not all of these colors are
used by the vertices in the neighbor set N(v) of v, we can assign the unused color
to v and will thus have constructed a 5-vertex coloring of G.

Consider the situation that all five colors have been used for coloring the vertices of
N(v). Note that 6(v) = 5 so that we may assume that N(v) = {v1,...,vs5} and
that vertex v; has color c¢; according to a clockwise ordering of these vertices around
v. We will rearrange the colors of G* such that we can assign one of the colors c; to
.

Let us first assume that there is no (v1,v3)-path in G* for which all vertices have
been colored either c1 or c3. Now consider all paths in G* that originate in vi and
for which the vertices are colored either cq or c3. These paths induce a subgraph H of
G*. Note that vs ¢ V(H), as this would mean that there is a (vq, v3)-path. For the
same reason, none of vs's neighbors can be in H, i.e., N(v3) N V(H) = @. What
we can then do is interchange the colors cy and c3 in H, which leads to another
5-vertex coloring of G*. However, in this case, vertex vy will be colored c3, and
none of the vertices in N (v) will be colored cy. Therefore, we can use c¢1 for v.

Let us now assume that there is a (vy,v3)-path P in G* for which all vertices have
been colored either c1 or c3. Consider the cycle [v3, v, v1, P]. This cycle either
encloses vy, or it encloses vy and vs. Hence, because G is planar, there can be
1o (v, vy)-path in G* whose vertices are colored using only ¢y and c4. Again,
consider all paths originating in v, and that have either color cy or c4. As before,
these paths induce a subgraph H' of G*. We interchange the colors of the vertices
in H', allowing us to assign color ¢, to v, and thus leading to a 5-vertex coloring of
G.
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Q 93: Consider a connected weighted graph G with two vertices of odd de-
gree: u and v. Prove that by duplicating every edge on a minimum-weight
(u,v)-path, we obtain a minimum-weight Eulerian graph.

First note that by duplicating edges of any (u,v)-path P will transform G to a
Eulerian graph. This can be easily seen when realizing that both u and v will
become incident with one extra edge, and that every intermediate vertex on path
P will become incident with two extra edges. As a consequence, all vertices in the
transformed graph will have even degree, meaning that the graph is Eulerian.

Let G* be the transformed graph obtained by duplicating the edges of a minimum-
weight (u,v)-path. Let G** be a graph resulting from taking any (u,v)-path and
duplicating its edges. It is not difficult to see that w(G*) %! Yecr(cryw(e) <
Yecr(cH) w(e) def 20(G**), which completes our proof.

Q 94: A k-cube is a simple connected graph with 2k vertices. Each vertex
is represented by a k-bit number. Let d(u,v) be defined as the number of
positions in which u and v have a different bit. Two vertices # and v are
joined if and only if d(u,v) = 1. Show that a k-cube is Hamiltonian.

The proof is easy, and can be done by induction. If k = 1, we simply need to visit
each vertex of a two-vertex graph with an edge connecting them.

Assume that the statement is true for k > 1. To build a (k + 1)-cube, we take two
copies of the k-cube and connect the corresponding edges. Take the Hamiltonian
cycle on one cube and reverse it on the other. Then choose an edge on one that is
part of the cycle and the corresponding edge on the other and delete them from the
cycle. Finally, add to the path connections from the corresponding end points on
the cubes which will produce a ccycle on the (k + 1)-cube:

Q 95: Show that a graph is Eulerian if and only if it is connected and if the
set of its edges can be partitioned into a disjoint union of cycles.

Suppose G is an Eulerian graph. Then each vertex in G has an even degree of at
least 2. Thus there is at least one cycle Cy in the graph. If G is not this cycle,
let Gy = G — E(Cy) Since every vertex in a cycle is of degree 2, every vertex
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in Gy is also even and, as before, has cycle Cy. Let Gp = G; — E(Cy) = G —
E(Cy1) — E(Cy). We repeat this process of identifying cycles until we get the graph
Gy = G—E(Cy) — E(Cy) — - - - — E(Cy) with no edges. Thus the set of edges is
the disjoint union of these k cycles.

Conwversely, suppose the set of edges in a connected graph G is the disjoint union of k
cycles. Consider any one of these cycles, say cycle Cy. Since the graph is connected,
there is a cycle (say Cp) such that the two cycles have a vertex v, in common. Let
Q12 be the closed walk that consists of all the edges in these two cycles. As before,
there is a cycle Cs such that this cycle and walk Q15 have no edge in common but do
have vertex vy in common. Let Q123 be the closed walk that contains all the edges of
these three edge-disjoint cycles. We repeat this procedure until we get a closed walk
that contains all the edges of the graph. Thus the graph is Eulerian.

Q 96: Prove that a connected graph G (with more than one vertex) has an
Euler tour if and only if it has no vertices of odd degree.

First, assume that P is an Euler tour of G, originating and ending in, say, vertex
v. Consider a vertex u different from v. Obviously, u lies on P and for each edge
(wy,u) € E(P) that is used for “entering” u, there is a unique other edge (u,wy)
traversed for “leaving” u. Moreover, because these edges are traversed exactly once,
edges for entering u are always uniquely paired with edges for leaving u. Hence,
the degree of u must be even. By a similar reasoning, the degree of v must also be
even. We conclude that all vertices of G have even degree.

Conversely, assume that all vertices of G are of even degree. We now need to prove
that G has an Euler tour. To this end, select an arbitrary vertex v and construct a
trail P by subsequently traversing edges until it is no longer possible to traverse an
edge not belonging to P. Let w be the vertex where P ends. If w # v, then clearly
we have “entered” w once more than we have “left” it, meaning that é(w) is odd.
This violates our assumption, hence w = v and hence P must be a closed trail.

If E(P) = E(G) we have just constructed an Euler tour and we're done. Now
assume E(P) # E(G), that is E(P) C E(G). Because G is connected, there is
a vertex u of P incident with edges that are not part of P. Consider the induced
subgraph constructed by simply removing all edges that are part of P: H 4f G —
E(P). Note that H may be disconnected. Because every vertex in G has even
degree, but also every vertex in P, so will every vertex in H have even degree. Let
component H' contain u. Again, construct a (closed) trail P' in H' originating
in u until no more edges can be added that are not yet contained in P'. Because
|E(P")| > 0, merging P and P’ will yield a larger trail in G. If this larger trail
does not contain all edges of G, we repeat the procedure until we have constructed
a closed trail containing all edges of G. This trail will form an Euler tour.

Q 97: Prove that a connected graph G (with more than one vertex) has an
Euler trail if and only if it has exactly two vertices of odd degree. Moreover,
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the trail originates and ends in the vertices of odd degree.

First, let P be an Euler trail originating in u and ending in v. By the same reasoning
as in the previous proof, all vertices except u and v must be of even degree.

Conwversely, assume G has exactly two vertices u and v of odd degree. Consider the
graph G* constructed from G by adding an edge e = (u, v). All vertices in G* will
now have even degree. Because G* is obviously also connected, we know that G*
has an Euler tour P. Removing e from P yields an Euler trail for G.

Q 98: Using Fleury’s algorithm, obtain an Euler tour for the following graph:
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Q 99: If the number of odd-degree vertices in a connected graph G = (V,E)
is 2k, show that the set E can be partitioned into k subsets such that the edges
in each subset constitute a trail between two odd-degree vertices.

Suppose the odd-degree vertices are v;(1 < i < k) and w;(1 < i < k). Construct
k new vertices x;(1 < i < k) and 2k new edges (x;,v;) and (x;,w;) for 1 <i < k.
In the graph G* thus constructed, each vertex has even degree, so G* is Eulerian.
Construct an Eulerian tour Q in G*. Observe that in this tour, the two edges
adjacent to each new vertex x; appear consecutively in Q for each i. Now delete from
this circuit all the new vertices x; (and, of course, all the new edges). The remaining
edges in Q precisely constitute k pairwise disjoint sets, forming a partition of E such
that the edges in each subset of the partition constitute a trail between two distinct
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odd vertices.

Q 100: Extend the following graph by adding a minimal number of edges
such that the extended graph is simple and Eulerian.

1 2 3
6 5 4
7 8 9

We first need to identify the odd-degree vertices, and subsequently join pairs of
vertices. In our case, adding (2,8) and (3,9) does the trick.

Q 101: Prove that a weakly connected digraph is Eulerian if and only if the
indegree of each vertex is equal to its outdegree.

Whenever a walk passes through a vertex, two distinct arcs are used: one to the
vertex and one from the vertex. So each such passing results in a contribution of
one to the outdegree and one to the indegree. Thus the existence of a directed walk
containing all the arcs implies that the outdegree of each vertex equals its indegree.

Conwersely, let G be a weakly connected digraph with m arcs in which the indegree
of each vertex equals its outdegree, We prove by induction on m that the digraph
is Eulerian. The result is obviously true when m = 2. Assume that the theorem
is true for all weakly connected digraphs with m > 2 arcs, and let D be one such
digraph. Observe that the outdegree (and therefore the indegree) of each vertex in
D is positive. Let T be any trail from an arbitrary vertex u to another vertex v in
this digraph. There will be at least one arc (zﬁ) that is not an arc in T. So it is
possibe to extend the trail and end up with a trail that terminates at u. If the closed
trail T* thus obtained contains all the arcs of D, we are done. Otherwise, delete
from D all the arcs belonging to T* as well as the vertices that become isolated as
a result of this deletion. Each component of the resulting digraph D* is weakly
connected with fewer arcs in which the outdegree and the indegree are the same. So
by the induction hypothesis, each component has a directed Eulerian circuit. Since
D is weakly connected, each weak component of D has a vertex in common with the
closed walk T*. An Eulerian circuit for D can now be constructed by inserting an
Eulerian circuit of each weak component H of D* at a vertex common to both H
and T*.
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Q 102: If every vertex in a graph G has even degree, no edge in that graph is
a cut edge.

If all vertices have even degree, G has an Euler tour, which, in turn, is the union of
edge-disjoint cycles. In other words, every edge is part of a cycle. Therefore, no edge
is a cut edge.

Q 103: Find all positive integers n such that K, is Eulerian.

The degree of any vertex in a complete graph with n vertices is (n — 1), so the graph
is Eulerian if and only if n is odd.

Q 104: Show that a digraph that has an Euler tour is a strongly connected
digraph. Is the converse true?

Since the digraph is Eulerian, there is a closed directed trail emanating from every
vertex that returns to it after traversing through each arc exactly once. Such a
closed trail no passes through each vertex of the graph at least once. So there is a
directed trail (and therefore a directed path) from every vertex to every other vertex,
establishing the strong connectivity of the digraph.

The converse is not true; a strongly connected digraph need not be an Eulerian
graph. As a counterexample, consider the digraph G obtained by introducing a new
arc from a vertex to a nonadjacent vertex in the cyclic digraph1l -2 — 3 — 4 —
1.

Q 105: Consider a graph G with n vertices and m edges.

(a) Can G be Eulerian if n is even and m is odd?

(b) Can G be Eulerian if n is odd and m is even?

(a) Let Cis a cycle with an even number of vertices in which v is a vertex. Consider
a cycle C* with an odd number of vertices passing through v such that the two
cycles have no edge in common. The tour G that consists of the edges of these
two cycles is a graph in which each vertex is even.

(b) In part (a), suppose both C and C* are odd-length cycles. The tour constructed
as the union of the two cycles has an odd number of vertices and even number
of edges.

Q 106: If graph G is Hamiltonian, then for every proper nonempty subset
S C V(G), we have that w(G — S) < |§].

Consider a Hamilton cycle C of G. If we consider any proper nonempty subset
S C V(G), then obviously, because every vertex is visited exactly once, the number
of components in C — S will be less or equal to |S|. However, because C contains
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all vertices of G, we also have that w(G — S) < w(C — S), which completes the
proof.

Q 107: Prove that if G is a simple graph with n = |V(G)| vertices, n > 3 and
each vertex v has degree 6(v) > n/2, then G is Hamiltonian.

Assume the theorem is false. Let G be a non-Hamiltonian graph with n > 3 vertices
and for which 6(v) > n/2 for each of its vertices. Moreover, assume that G has a
maximal number of edges, i.e., adding a single edge (while keeping G simple) would
make it Hamiltonian. Let u and w be two nonadjacent vertices. By construction
of G we know that if we add an edge e = (u,w), the resulting graph G* would
be Hamiltonian, and thus there exists a Hamilton path (u,w)-path P in G with
u=1\[v,0, ..., 0y = w).

Now consider the following two sets of vertices:

S = N(u) = {o|(,01) € E(G)} and T = {o;|{0;_1,w) € E(G)}

S consists of the neighbors of u, whereas T consists of the successors on P of neigh-
bors of w. Note that |S| > n/2. Likewise, because P contains all vertices in G, T
contains as many elements as there are edges (v;_1,w), which corresponds to 6(w).
This means that | T| > n/2. Furthermore, vertex u is not contained in S (because it
cannot be a neighbor of itself), nor is it contained in T (which contains only succes-
sors of other vertices on P). In other words, S, T C {vy,...,v,}, which, together
with the fact that |S| + |T| > n, means that the two sets have at least one vertex in
common. Let this be vertex v;. We now have the situation that v; is a neighbor of u,
and that v;'s predecessor v;_1 is a neighbor of w. But in that case, we can construct
the Hamilton cycle [u = vy, v}, Vj11 ... 0n = W, Vj_1,Vj_2...01 = u]. Note that
this cycle does not contain edge (u,w). In other words, we have just shown that
G is Hamiltonian, which contradicts our initial assumption. This means that there
is no vertex v; € SN T and thus |SN T| = 0. On the other hand, we know that
u & SUT,sothat |SUT| < n. This now brings us to:

S(u) + 6(w) = || +|T| = [SUT| +[SNT| < n

which cannot be true, meaning that we cannot assume the theorem is false.

Q 108: Let G be a non-Hamiltonian, connected graph. For every pair of
nonadjacent vertices u and v, §(u) + 6(v) > k, for some k > 0. Show that G
contains a path of length k.

Let P = [vg, v1, V2, ..., Vp)] be a longest path in the graph. Since P is a longest
path, neither vy nor v, can be adjacent to a vertex not in P. Let vy be adjacent to
intermediate vertex v;. We claim that vertex v, cannot be adjacent to vertex v;_1.
For suppose that this were the case. Then the p vertices in the path constitute the
cycle C = [vg, vj, Viy1, -, Up, Vi—1, Vi—p, ---, U1, Vo), which cannot contain all
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vertices of G, beacause G is not Hamiltonian. This implies that there is a vertex
w that is not a vertex in the cycle but that is adjacent to one of its vertices. This,
in turn, implies that there is a path of length (p + 1) in the graph violating the
maximality of P. Since vy is adjacent to v,_1, we conclude that vy cannot be
adjacent to vy,.

Note again that because P is a longest (vo, vy )-path, that each neighbor of vy must
lie on P, for otherwise we could have constructed a longer path. The same holds for
vp. Also, we have shown that if vy is adjacent to v;, then vy, cannot be adjacent to
v;_1, leading to the following general organization:

This means that 5(vg) 4 6(vp) < p. But 6(vp) +6(vg) > k since the two terminal
vertices of the longest path are nonadjacent. Since there is a path with p edges and
since p > k, there exists a path with k edges.

Q 109: If G is a connected graph with k odd-degree vertices, find the mini-
mum number of trails in G such that every edge in the graph is an edge in
exactly one of these trails.

For each odd-degree vertex v, we know that any trail that passes through v will not
contain all of its incident edges. Hence, to make sure that we have those edges in
a trail as well, we need to make sure that every trail starts and ends in a different
odd-degree vertex. Therefore, we need at least k/2 trails. (Note, by the way, that k
is evern.)

Q 110: Suppose in a group of n people (n > 3), any two of them together
know all the other people in the group. Show that these n people can be
seated around a circular table so that each person is seated between two
acquaintances.

For this problem, we need to use the following property: if for any two vertices u
and v in a non-Hamiltonian connected graph, 5(u) + 6(v) > k, the graph contains
a path of length k. In our example, consider the acquaintance graph. We know
that 6(u) + 6(v) > n, meaning that there is a path of length n, which in our case
coincides with a cycle of length n. This is the cycle we’re looking for.

Q 111: Show that a directed graph D is Hamiltonian if and only if its trans-
formed undirected version D is Hamiltonian.

First assume that D is Hamiltonian and let C = [0, v?, ..., v", v'] be a Hamilton
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cycle. Clearly, the cycle

A 1.1 .2 2 2 1.1

C= [v 7 Qoutr Vins U7 Youtr - -+ Uznn’ vnl vgutr Uins ¥ ]

is a Hamilton cycle in D.

Conversely, consider a Hamilton cycle C in D. Obviously, for each vertex v* €
V(D), C contains the edges (vf ,oF) and (vF,o%,,), for otherwise it would be
impossible to have visited vertex v*. For this reason, C corresponds to a unique

directed Hamilton cycle C in D.

Q 112: Show that a k-regular simple graph with 2k — 1 vertices is Hamilto-
nian.

Dirac’s theorem tells us that for a simple graph G with n > 3 vertices, G is Hamil-
tonian if 6(v) > n/2 for each vertex v. In the case of a k-reqular graph with 2k — 1
vertices, we have thatk > (2k —1)/2 =k — %, meaning that it is Hamiltonian as
well.
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Q 113: Prove that for any spanning tree T of a graph G and edge e = (u,v) €
E(G) thatisnotin T, T + e contains a unique cycle.

Note that because T is acyclic, connected, and spanning, we necessarily have that
every cycle in T + e contains e. We also know that C is a cycle of T + e if and only
if C — e is a path connecting vertices u and v. But as we have proven before, C — e
is the unique path connecting u and v in T, and thus C must be unique.

Q 114: In Kruskal’s algorithm, we select an edge ¢ of the cycle C such that
é & E(Topt), but é € E(T). Prove that & indeed exists.

Prove this by contradiction, i.e., assume that such an edge does not exist. In that
case, all edges of C are also edges of Topt, and none is edge in T. If this were true,
then Topt would contain the cycle C, which is clearly impossible.

Q 115: Describe Dijkstra’s algorithm for constructing a sink tree using pseudo-
code, analogously to the description found in Chapter 3.

S(u) « {u}
L(u) < (u,0); foreachv € V(G),u # v : L(v) < (—,00);
while S(u) #V do
R(u) = S(u) Upes(u) Nin(0);
forally € R(u)\S(u) do

forall x € Nout(y) N S(u) do
1sz( ) (<ﬁ>) < Lz(}/) then
— (%, Lo(x w((y, %))
end 1f
end for
end for

select v ¢ S(u) where Ly(v) is minimal;

S(u) < S(u) U{v};

end while

Q 116: Prove that for any connected graph G with n vertices and m edges,
n<m+1

The proof proceeds by induction on the number of edges m. Clearly, if m = 1, we
necessarily have n = 2 so that the theorem is true. Now assume the theorem is true
for all graphs with fewer than k edges and consider a graph G with exactly k edges
and n vertices.

Suppose that G contains a cycle C. In that case, choose an arbitrary edge e € E(C)
and construct the induced subgraph G* = G — e. Because e was lying on the
cycle C, G* will still be connected, meaning that n = |V(G*)| < |[E(G*)|+1 =
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(k—1) + 1 = k. But in that case, we certainly have that n < k + 1.

If G does not contain a cycle, find a longest path P in G. Let u and w be the end
points of P. Note that the degree of each these nodes must be 1, for otherwise P could
not have been a longest path. Now consider the induced subgraph G* = G — u.
Clearly, G* is connected and we have |V(G*)| = n —1and E(G*) = k— 1. By
induction, we thus also have thatn —1 < (k—1)+1 =k, and thusn < k+1,
completing our proof.

Q 117: Show by using a proof by induction that a tree with n vertices has
exactly n — 1 edges.

If n =1, the graph cannot have any edges or there would be a loop, with the vertex
connecting to itself, so there must be n — 1 = 0 edges.

Suppose that every tree with k vertices has precisely k — 1 edges. If the tree T
contains k 4 1 vertices, we will show that it contains a vertex with a single edge
connected to it. If not, start at any vertex, and start following edges marking each
vertex as we pass it. If we ever come to a marked vertex, there is a loop in the
edges which is impossible. But since each vertex is assumed to have more than one
vertex coming out, there is never a reason that we have to stop at one, so we much
eventually encounter a marked vertex, which is a contradiction.

Take the vertex with a single edge connecting to it, and delete it and its edge from
the tree T. The new graph T will have k vertices. It must be connected, since the
only thing we lopped off was a vertex that was not connected to anything else, and
all other vertices must be connected. If there were no loops before, removing an edge
certainly cannot produce a loop, so T' is a tree. By the induction hypothesis, T' has
k — 1 edges. But to convert T' to T we need to add one edge and one vertex, so T
also satisfies the formula.

Q118: Prove that a connected graph G with n vertices and m edges for which
n=m+1,is a tree.

We prove the theorem by contradiction. To this end, assume G is not a tree, i.e., it
contains a cycle C. Let edge e € E(C). Obviously, the induced subgraph G — e
is still connected, but with one edge less than G. We know that |V (G —e)| <
|[E(G—¢e)|+1. With|V(G—e)| = nand |E(G —e)| = m — 1, we thus have
that n < (m—1)+4+1 = m. However, we assumed that n = m + 1, which
contradicts that n < m. Hence, our initial assumption, namely that G is not a tree,
was false.

Q 119: Show that a graph G is a tree if and only if there exists exactly one
path between every two vertices u and v.

We need to prove two things: (1) If G is a tree then there exists a unique path
between every two vertices and (2) if there exists a unique path between every two
vertices, then G is tree.
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(1) Let G be a tree and let u and v be two distinct vertices. Because G is con-
nected, there exists a (u,v)-path P. Assume there is another, distinct (u,v)-
path Q. Let x be the last vertex on P that is also on Q when traversing P
starting from u. In other words, the next vertex following x will be different
for P and for Q. Likewise, let y be the first vertex succeeding x that is common
to both P and Q again. We have now identified a cycle in G, contradicting
that G was a tree.

(2) Now assume that G is not a tree. Note that because there is a path be-
tween every two vertices, G is connected. If G is not a tree, there must

be a cycle C = [v1,vp, ...,vn = v1]. Clearly, for every two distinct
vertices v; and v; (i < j) on C we have also have two distinct (v;, v;)-
paths: P = [v;, vi41, Y vj] and P, = [v;,0;_1, ..., 02,01 =

On, Un—1, « -+, Oj41, vj], which contradicts the uniqueness of paths.

Q 120: Prove that an edge e of a graph G is a cut edge if and only if e is not
part of any cycle of G.

Aguain, we need to prove two things: (1) If e is not part of any cycle, then e is a cut
edge, and (2) if e is a cut edge, it cannot be part of any cycle of G.

(1) By contradiction: assume that e = (u,v) is not a cut edge (and not part
of any cycle). If e is not a cut edge, then u and v must still be in the same
component of G — e. This implies that there is a (u,v)-path P in G —e
connecting u and v. However, this also means that P + e is a cycle in G,
which violates our assumption.

(2) Again, by contradiction: let e = (u,v) be a cut edge of G and let x and y be
two vertices in different components of G — e. Because there is an (x,y)-path
P in G connecting x and y, we necessarily have that e is part of P. Assume
that u precedes v when traversing P from x to y. Let Py be the (x,u)-path
part of P and P, the (v,y)-path that is part of P. If e were part of a cycle
C, then u and v would be connected in G — e through the path C — e. Let
u* be the first vertex common to Py and C — e when traversing Py from x.
Likewise, let v* be the first vertex common to P, and C — e when traversing

P, from y. Let a £ b denote that part of path Q that connects vertex a to

P - P ,
b. Clearly, the path x — u* £ o y connects x and y in G — e,

contradicting that e was a cut edge. Hence, e cannot be part of any cycle.
Q 121: Prove that a connected graph G is a tree if and only if every edge is a
cut edge.

Again we need to prove two things: (1) If G is a tree then every edge is a cut edge,
and (2) if every edge is a cut edge, then G is a tree.
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(1) Let G be a tree and e an edge of G. Because G contains no cycles, e is also not
contained in any cycle, meaning that it must be a cut edge.

(2) Assume G contains a cycle C. However, we now know that none of the edges
of C can be a cut edge, which means that not every edge in G is a cut edge,
contradicting our starting-point.

Q 122: Show that any tree with at least two vertices is bipartite.

A tree has no cycles, so it certainly does not contain any cycles of odd length. There-
fore, it is bipartite.

Q 123: Show that a graph G is a tree if and only if it is acyclic and whenever
any two vertices # and v in G are joined by an edge, the graph G* = G +
(1, v) has exactly one cycle.

If G is a tree, it is connected and acyclic. Let u and v be any two nonadjacent
vertices in G. There is a unique path between u and v. If we join u and v by an
edge, this edge and path P create a unique cycle in the enlarged graph G*. On the
other hand, suppose G is an acyclic graph in which u and v are two any arbitrary
nonadjacent vertices such that the linking of the two by a new edge creates a unique
cycle in G*. This implies that there is a path in G between u and v. So G is
connected and hence is a tree.

Q 124: Prove that a graph is connected if and only if it has a spanning tree.

Let G be a connected graph. Delete edges from G that are not cut edges until we get
a connected subgraph H in which each edge is a cut edge. Then H is a spanning
tree. On the other hand, if there is a spanning tree in G, there is a path between
every pair of vertices in G: thus G is connected.

Q 125: Show that if a graph is disconnected, its complement is connected.

If a graph G is not connected, it will have at least two components. Suppose u
and v are two vertices belonging to two different components of G. Then these two
vertices are adjacent in the complement of the graph. In other words, G and its
complement cannot both be disconnected graphs. So whenever G is a disconnected
graph, its complement is necessarily a connected graph.

Q 126: Show that every tree of n > 2 vertices has at least two vertices having
degree 1.

Suppose the degrees of the n vertices of a tree are d;, where i = 1,2,...,n. Then
dy +dy + ... +dy = 2n — 2. If each degree is more than 1, the sum of the n degrees
is at least 2n. So there is at least one vertex (say vertex 1) with degree 1. Then
dy +ds+..+d, = 2n — 1. At least one of these (n — 1) positive numbers is
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necessarily 1. So there is one more vertex of degree 1. Thus at least two of the
degrees must be 1.

Q 127: Show that the sequence d = [dy, dy, ..., d,] of positive integers,
where d; < dp < ... <d, is the degree sequence of a tree with n vertices if
andonly if Y7 ;d; =2(n—1).

The necessity is obvious. We prove the sufficiency by induction on n. The property
holds for n = 1 and n = 2. Assume that the property holds n > 3. Let 0 < dy <
dy <...<dpanddy+dy+---+d, =2(n—1). At least one of these numbers
isl. Sod =1. Alsod,, > 1. Letd* =d, —1. Thendy +---+d,_1+d* =
2(n —2). So by the induction hypothesis, there exists a tree T with (n — ) vertices
and degrees dy, d3, . .., d,_1 and d*. Construct a new vertex x and join that to the
vertex of degree d'. Now we have a tree with n vertices with degrees 1,dy, . .., dy.
Thus the property hold for n.

Q 128: Show that the number of vertices in a binary tree is odd.

Every vertex other than the root is an odd vertex. The number of odd vertices is
even. If we now include the root also, the total number of vertices is odd.

Q 129: Show that the number of terminal vertices in a binary tree with n
vertices is (n +1)/2.

Suppose there are k terminal vertices. Then the sum of the degrees of the n vertices
isk+2+3(n—k—1), which is equal to 2(n — 1) since the graph is a tree. Thus
k=m+1)/2

Q 130: Let i, (G) denote the minimal vertex degree of graph G. Further-
more, let C,, denote the graph with vertex set {v1,vy,...,v,} and edge set
{(v1,v2), (v2,v3),...,(vn,v1)},1e., acycle of length n.

(a) Show that if T is a tree with n vertices and G is a graph with 6,,;,(G) >
(n —1), T is isomorphic to a subgraph of G.

(b) Show that a tree with n vertices is isomorphic to a subgraph of the com-
plement of C,,4».

(a) The proof is by induction on n. This is true when the tree has two vertices.
The induction hypothesis is that if T* is any tree with (n — 1) vertices and
G* is any graph with 6,,;,(G*) > (n — 2), then T* is isomorphic to a sub-
graph of G*. Let T be any tree with n vertices, and let G be any graph with
Omin(G) > (n —1). Let v be any terminal vertex in T, and let u be the ver-
tex adjacent to v in T. Then T — v is a tree with (n — 1) vertices. Moreover,
Omin(G) > (n—1) > (n —2). So by the induction hypothesis, the tree T — v
is isomorphic to a subgraph of G. Let u* be the vertex in G that corresponds (for
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this isomorphism) to vertex u. Then 6(u*) > (n — 1) in G. The graph T — v
has only n — 2 vertices in addition to vertex u. So there should be a vertex w in
G that is adjacent to u* such that w does not correspond to any vertex in T — v.
By identifying v with vertex w, we see that T is isomorphic to a subgraph of G.
Thus the theorem is true for n as well.

(b) The complement of Cp,1g is an r-regular graph G, wherer = n > n—1. In
other words, 8, (Cyy2) > 1 — 1, so that a tree with n vertices is isomorphic
to a subgraph of Cy,4.

Q 131: Show that if T; = (V;, E;), where i = 1,2,...,k are subtrees of T =
(V,E) such that every pair of subtrees have at least one vertex in common,
the entire set of subtrees have a vertex in common.

Let n be the number of vertices of T. The proof is by induction on n. The desired
property holds if n = 2. Assume that the property holds for all trees with n > 2
vertices.

Let T be a tree with (n + 1) vertices in which x is a leaf vertex adjacent to a vertex
y. Suppose the subtrees Ty, Ty, ..., Ty of T are such that every pair of them has
at least one vertex in common. If x is not a vertex in any of these trees, the trees
are subtrees of a tree with n vertices; thus the property holds for the graph T with
(n + 1) vertices. If one of these trees is the tree with just one vertex x, x is common
to all the trees; thus the property holds in this case.

We now examine the remaining case. Consider T; — x. If x is a vertex common to T;
and Tj, y is also a vertex common to T; and T;. Therefore, y is a common vertex for
T; — x and T; — x. Thus by the induction hypothesis, all the subtrees T; — x have a
common vertex. Therefore, the entire collection {T;} has a vertex in common.

Q 132: If both G and its complement are trees, how many edges does G
have?

The total number of edges of G and G is equal to n(n — 1) /2. We also know that

|E(G)| = |[E((G))| = n — 1. Therefore, (n — 1) + (n — 1) = n(n — 1) /2, which
givesis n = 4.

Q 133: A forest is a graph consisting of k components, each component being
a tree. How many edges does a forest of n vertices and k trees have?

Let each component T; have n; vertices and n; — 1 edges. We then know that
E(G)| = Xy [E(Ty)| = Ty mi—Zi 1=n—k

Q 134: Show that if the degree of every non-leaf vertex in a tree is 3, the
number of vertices in the tree is even.

Let k be the number of leaf vertices. We then know that k +3(n — k) = 2(n — 1),
which means that n = 2k — 2 and thus even.
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Q 135: If the degree of each vertex in a graph is at least two, show that there
is a cycle in the graph.

If there is a loop at a vertex, that loop can be considered a cycle. If there is more than
one edge between two vertices, any two edges joining two vertices will form a cycle.
Suppose the graph is simple. Let vy be any vertex in the graph, and let ey be the
edge joining this vertex and vertex v1. Now there exists a third vertex v, and edge
ey joining v1 and vy. This process of finding new vertices and edges is repeated, and
at the k' stage, we have edge ey joining vertices vi_1 and vy and a path from vy
to vy consisting of k edges. Since the number of vertices in the graph is finite, we
must ultimately choose a vertex that has been chosen before. Suppose v, is the first
repeated vertex in this process. Then the path between the two occurrences of this
repeated vertex is a cycle.

Q 136: Using Dijkstra’s algorithm, find the sink tree rooted at vertex 7.

Using the notation v(u,x) to denote that vertex v can reach vertex 7 via u at a
distance of x, we obtain:

1. So(7) =7

2. 51(7) = {5(7,6),7(7,0)}

3. 52(7) = {5(7,6),6(5,6),7(7,0)}

4. S3(7) = {3(5,11),5(7,6),6(5,6),7(7,0)}

5. S4(7) = {3(5,11),4(6,11),5(7,6),6(5,6),7(7,0)}

6. S5(7) = {2(3,12),3(5,11),4(6,11),5(7,6),6(5,6),7(7,0)}

7. S6(7) = {1(2,16),2(3,12),3(5,11),4(6,11),5(7,6),6(5,6),7(7,0)}
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Q 137: List the edges of a sink tree rooted at vertex 1 of the network with V =
{1,2,3,4,5,6} and E = {(1,2),(1,3),(1,4),(2,3),(2,5),(3,6),(4,5),(5,6)}
with weights 4, 7, 3, 3, 2, 2, 3, and 2, respectively.

{(1,2),(1,3),(1,4),(4,5), (5,6)}.

Q 138: If no two edge weights of a connected graph G are equal, show that
G has a unique minimum spanning tree.

Suppose there are two minimum spanning trees, T and T* with w(T) = w(T*) =
s. Let e = (u,v) € E(T). We know that T — e divides T into two subgraphs, and
thus partitions the set of vertices into two sets V1 and V,. Because T* is a spanning
tree, there is (u,v)-path in T* that will have an edge e* = (p,q) with p € V;
and q € Vp. Now consider the trees Ty = T —e+e*and T, = T —e* +e.
We know that w(Ty) = s — w(e) + w(e*), and w(T,) = s — w(e*) + w(e). If
w(e) > w(e*), w(Ty) < s, which is a contradiction since T is a minimal spanning
tree. Ifw(e) < w(e*), w(Tp) < s, which is also a contradiction. We conclude that
there is only one minimal spanning tree.

Q 139: Show that if a connected weighted graph G contains a unique edge e
of minimum weight, e is an edge of every minimal spanning tree of G.

Suppose T is a minimal spanning tree of G and e is not an edge of T. Let f be
any edge of a cycle of minimal weight also containing e. Then T* = T — f +e¢
is spanning tree of G, and w(T*) = w(T) — w(f) + w(e). Since w(e) < w(f),
w(T*) < w(T), and this contradicts the assumption that T is a minimal spanning
tree.

Q 140: Find the weight of a minimum spanning tree in the following graph,
using Kruskal’s algorithm.

Add, in order, the edges (4,5), (5,6),(1,5),(3,5), (4,7),(6,9),(1,2),(7,8), lead-
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ing to a total weight of 20.

Q 141: Obtain a minimum spanning tree for the following graph, using
Kruskal’s algorithm.

2 5 5 5 8
4
4 4 5 3 2 2
6
1 3 2 2 9 3
4 11
4 5 3 2 3
4 2
5 3
4 7 10

Add in sequence the following edges: (6,8), (6,9), (6,10), (3,6),(10,11), (5,6),(6,7),(2,3),

Q 142: Construct a maximum weight spanning tree for the following graph:

2 5 5 ¢ 8
4
4 4 5 3 2 2
6
1 3 2 2 9 3
4 11
4 5 3 2 3
4 2
5 3
4 7 10

In this case, simply use Kruskal’s algorithm on the same graph with each weight
w(e) replaced by max{w(e)le € E(G)} — w(e). This gives a minimal span-
ning tree T which corresponds to a maximal-weight spanning tree with weight
max{w(e)|e € E(G)} —w(T).

2 1 5 ¢ 8
2
2 2 1 3 4 4
6
1 3 4 4 9 3
2 1
2 1 3 4 3
2 4
1 3
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Q 143: Given a connected, simple undirected graph G with n vertices. Argue
that a given vertex u can lie on at most (n — 1)(n — 2)/2 paths connecting
other (distinct) vertices.

There are a total of (”51) different pairs of vertices, other than u. Because the graph
is connected, all pairs of vertices are connected through a path. Hence, At most
(”51) paths will also pass through u.

Q 144: Prove that the center of a tree is either a singleton set consisting of a
unique vertex or a set consisting of two adjacent vertices.

If a tree has two vertices, the center is the set of those two vertices. If there are three
vertices in a tree, the center is the set consisting of the nonterminal vertex (i.e., the
vertex u with 6(u) > 1). A tree with four vertices is either Ky 3 (with three terminal
vertices) or a path with two terminal vertices. In the former case, the cardinality of
the center is 1; in the latter case, the center is the set of two adjacent nonterminal
vertices. More generally, let T be a tree with five or more vertices, and let T* be the
tree obtained from T by deleting all terminal vertices of T simultaneously. Observe
that the eccentricity of any vertex in T* is one less than the eccentricity of that
vertex in T. Thus the center of T is equal to the center of T*. If the process of
deleting terminal vertices is carried out successively, we finally have a tree with
four or fewer vertices.

Q 145: A path P between two distinct vertices in a connected graph G is a
diametral path if there is no other path in G whose length is more than the
length of P. Show that (a) every diametral path in a tree will pass through its
central vertices, and (b) the center of a tree can be located once a diametral
path in the tree is discerned.

Let t be the length of any diametral path in a tree, and let P be a fixed diametral
path joining the vertices v and w.

(a) If t is even, there exists a unique vertex c in P that is equidistant from either v
or w. In this case, c is a central vertex. Suppose Q is another diametral path.
Since the graph is connected, the two diametral paths should have a vertex in
common. If c is not a common vertex, it is possible to obtain path whose length
is more than t. So if the length of a diametral path is even, there exists a unique
central vertex on that path through which every diametral path passes.

(b) Iftis odd, there exist two vertices ¢’ and ¢’ in P such that the number of edges
in the path between v and ¢ is equal to the number of edges between w and c”.
In this case, both ¢’ and ¢ are central vertices. Suppose Q is another diametral
path. Then both P and Q share the edge joining ¢’ and ¢" as a common edge.
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Thus once a diametral path in a tree is located, it is easy to find the center of the
tree.

Q 146: Show that the weighted clustering coefficient is identical to th cluster-
ing coefficient in an unweighted graph for the special case that all weights
are equal to 1.

First, note that the vertex strength, defined as Y-, , .,y w(e) over all edges incident
with v is exactly the same as §(v) in case all weights are 1. Taking a closer look at
the nominator of the weighted clustering coefficient, we see that we are enumerat-
ing over (‘5(20)) pairs of edges, and each time for a total weight of 2. Furthermore,
note that we are considering only those edges e; ; and e; x for which we know that
Alj, k] = 1. Of course, there are exactly |E(G[N(v)])| such edges, i.e., the num-
ber of edges in the graph induced by the neighbor set N(v) of v. However, we are
taking all pairs e; ; and e; twice into account. Hence, the nominator is equal to
4 - |E(G[N(v)])|. Finally, realizing that 6(v) = |N(v)|, we have shown that the

two clustering coefficients are the same in the case all weights are equal to 1.

Q 147: Give an example of a simple, undirected graph G for which CC(G) #
p(G). Consider the case that all vertices of G have at least degree 2.

For the following graph, we have that CC(G) = %, whereas its network density is
7
equal to {5

Q 148: Given an ER(n, p) random graph. How many vertices can we expect
to have vertex degree k?

We have already explained that the probability that a vertex has degree k is equal to
Pk = (”;1);7’((1 — p)"~ 1=K, This means that we can expect a total of n - py vertices
to have degree k.

Q 149: Prove that a triple is always connected.

We know that a simple graph with n vertices and m + 1 edges is a tree, and thus
connected. A triple is a tree, being a subgraph with 3 vertices and 2 edges, is a tree
and is thus connected.

Q 150: Explain why the giant cluster of a ER(2000,0.015) shrinks after re-
moving more than 98% of the vertices.

Removing 98% of the vertices means that there are only 40 vertices left. This graph
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is so small that one cannot expect to see behavior that is similar to larger random
graphs.

Q 151: Show that Y7 ; i = 1m(m + 1), where we assume m > 1.

By induction. The equation is seen to hold for m = 1. Assume it to hold for values
m < M and consider the case m = M + 1. We have:

M+1 M

. . 1 1
i; zzl;z—i-(M—i-l) = SMM+1)+(M+1) = 5(M+1)(M+2)

which completes the proof.

. 1 _ _n—mil
Q 152: Prove that ) ;. D) = (milgn(ern) .

By induction. Cleary, for n = m the equation holds. Now assume it is true for
k < n. In that case, we have:

Y (51 (k+2)> + (n+1)1(n+2)
(n—1)—m+1 + 1
) (=D+2) T D) (s

1 1
n+1\ m+1 + n+2

i T2

_ 1 n2—nm-+2n—m+1
n+1 (m+1)(n+2)

B 1<(n+1)(nm+1))
- n+l (m+1)(n+2)
(n—m+1)
(m+1)(n+2)
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