

School of Business and	Economics
Exam:	Multivariate Statistics
Code:	E_EOR2_MS
Examinator: Co-reader:	Andre Lucas Julia Schaumburg
Date:	March 26, 2019
Time:	12:00
Duration:	2 hours
Calculator allowed:	Yes
Graphical calculator allowed:	Yes
Number of questions:	4
Type of questions:	Open
Answer in:	English
Remarks:	

Credit score: See the credits for each separate question

Grades: The grades will be made public on: April 9, 2019.

Inspection: Wednesday, April 10, 2019 at 10am. Room tba via CANVAS.

Number of pages: ... (including front page)

Good luck!

Question 1. [35points]

You have a normally distributed random vector $X \sim N(\mu, \Sigma)$, with $X = (X_1, X_2, X_3, X_4)^{\mathsf{T}}$, and

$$\mu = (1, 3, 0, *)^{\mathsf{T}},$$

$$\Sigma = \begin{pmatrix} 7 & 4 & -2 & * \\ 4 & 6 & -1 & * \\ -2 & -1 & 3 & * \\ * & * & * & * \end{pmatrix}.$$

A) What is your best guess of the value of $(X_1, X_2)^{\top}$ if you are given $X_3 = 2$? And what is the precision (=covariance matrix) corresponding to that? [10points]

B) If you know that

$$\left(\begin{pmatrix} X_3 \\ X_4 \end{pmatrix} \middle| \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \right) \sim N \left(\begin{pmatrix} \frac{-8X_1 + X_2 + 5}{26} \\ \frac{2X_1 + 3X_2 - 37}{26} \end{pmatrix}, \frac{1}{26} \begin{pmatrix} 11 & 7 \\ 7 & 8 \end{pmatrix} \right)$$

Compute the remaining elements of μ and Σ . [15pt]

You study the Trampoline distribution, which is given by a *mean-zero* normal random variable X with covariance matrix Σ , divided by an independent random variable U with pdf $f_U(u) = 1 - |u|$ for |u| < 1, and zero else, so Y = X/U.

C) Derive that the distribution of Y is given by

$$f_Y(y) = 2 \int_0^1 \frac{\exp\left(-\frac{z^2}{2}y^{\mathsf{T}}\Sigma^{-1}y\right)}{|2\pi\Sigma|^2} \cdot (z^p - z^{p+1}) dz,$$

Question 3. [20pt]

You estimated

$$\bar{x} = (1 \ 3 \ 5 \ 0)^{\mathsf{T}}$$

$$\mathcal{S} = \begin{pmatrix} 7 & 4 & -2 & -2 \\ 4 & 6 & -1 & 0 \\ -2 & -1 & 3 & 1 \\ -2 & 0 & 1 & 5 \end{pmatrix}$$

You hypothesize that the means of X_1 and X_3 are equal, *and* that the average mean of the first two variables (X_1, X_2) is the *twice* the average mean of the last two variables (X_3, X_4) .

A) Formulate this as a testing problem using matrix notation. [5pt	A)	Formulate this as	a testing problem	using matrix	notation.	[5pt]
--	----	-------------------	-------------------	--------------	-----------	-------

			,

B) Formulate the corresponding test statistic [you do not need to compute the value(s) numerically]. [5pt]

Assume the numerical value of your test statistic is 5.48.

You are given the following table.

Tod dre given the following table.			
χ^2 critical values for ν degrees	5%		
of freedom			
$\nu = 1$	3.84		
$\nu = 2$	5.99		
$\nu = 3$	7.81		
$\nu = 4$	9.49		

You proceed with your analysis, and ask yourself whether variable X_4 is uncorrelated with (X_1, X_2, X_3) . You compute the log-likelihoods under the null and the alternative and obtain the values -1238.1 and -1234.6, respectively.

D) Can reject your null hypothesis or not at the 5% significance level? Explain your answer. [5pt]

Question 4. [15pt]

You consider 6 stock returns from two different regions that you try to model using an orthogonal factor model structure with 2 factors.

The factors are

- (i) a factor for the general market conditions; all stocks load on this factor and have the same loading λ_0 ;
- (ii) a factor for the regional developments in the second region only; only the 3 stocks from region 2 load on the second (regional) factor, all with the same loading λ_1 .

A) Formulate the orthogonal factor model for this data. Carefully specify the factor loading matrix satisfying conditions (i) and (ii) above, and the covariance matrix of all the random variables used. [10pt]
You estimate a standard orthogonal factor model and obtain an estimated loadings matrix \hat{B} . The matrix \hat{B} does not look at all like what you expect theoretically. In particular, it does not have the zeroes for the stocks from region 1 with respect to the regional factor for region 2.
B) Abstracting from estimation error, explain why your estimates \hat{B} can be so far off from what you expect theoretically. [5pt]