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Instructions

(i) All questions should be answered to get full points.

(ii) Each question is worth 25 points.

(iii) Read the instructions in the questions carefully.

(iv) Answer the questions as detailed as possible. Use mathematical expressions

when necessary. You can use words when you cannot provide a formal math-

ematical answer to the questions.

(v) If a question is not clear to you, make your own assumptions to clarify the

meaning of the question and then answer the question based on your assump-

tions.

(vi) See the back of this page for some standard results that you may make use of

while answering the questions.
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Some standard results

Suppose that the scalar process {xt} follows the following data generating process:

xt = xt−1 + ut,

where x0 = 0 and ut has the following properties:

(a) ut = ψ(L)εt =
∑∞

j=0 ψjεt−j where
∑∞

j=0 j·|ψj| <∞ and {εt} is an i.i.d sequence

with mean zero and variance σ2
ε , and finite fourth moment;

(b) σ2 denotes the long run variance of {ut} and σ2
u denotes the contemporaneous

variance of {ut}.

Let W (r) be a standard Brownian motion process associated with ut. Then the

following results hold:

(1) T−1/2
∑T

t=1 ut
d→ σ2W (1);

(2) T−1
∑T

t=1 xt−1ut
d→ 1

2
σ2
[
W (1)2 − σ2

u

σ2

]
;

(3) T−3/2
∑T

t=1 tut−j
d→ σ

{
W (1)−

∫ 1

0
W (r)dr

}
for j = 0, 1, . . .;

(4) T−3/2
∑T

t=1 xt−1
d→ σ

∫ 1

0
W (r)dr;

(5) T−2
∑T

t=1 x
2
t−1

d→ σ2
∫ 1

0
W (r)2dr;

(6) T−5/2
∑T

t=1 txt−1
d→ σ

∫ 1

0
rW (r)dr;

(7) T−3
∑T

t=1 tx
2
t−1

d→ σ2
∫ 1

0
rW (r)2dr;

(8) T−(v+1)
∑T

t=1 t
v → 1/(v + 1) for v = 0, 1, . . .
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Question 1: Conceptual Questions (25 points out

of 100 points)

Below you will find 3 statements. All these are related to the concepts/techqniques

that have been discussed during the lectures. Some of these statements are correct,

some are wrong, some need further clarification. You need to provide a brief, to the

point answer that would contain (i) short explanations of the concepts mentioned

in the statement, (ii) your judgement about the statement about whether it is cor-

rect/wrong/unclear/incomplete, (iii) a correction of the statement. A formal answer

using mathematics is possible, sometimes very useful but not always necessary.

(a) (5 points) Mixing and stationarity are important properties that a random

sequence might have. About these properties the following is always true: If

a process is mixing then it is stationary.

(b) (10 points) Spurious regression is a phenomena we encounter when we regress

a random walk on a time trend. The resulting estimator from this regression

converges to a random variable and the t−statistic of this regression is consis-

tent.

(c) (10 points) Cross sectional dependence is encountered in panel data models.

Suppose having the panel data variables yi,t and xi,t for i = 1, . . . , N and

t = 1, . . . , T with the data generating process

yi,t = βxi,t + ui,t.

The presence of cross sectional dependence implies correlation along time, such

that

Cov(ui,tui,s) 6= 0, for t 6= s.

One way to eliminate the problems that might be induced by cross sectional

dependence is to consider the regression of yi,t on xi,t and on the lags of yi,t.

5



Answer:

Grading of these questions:

(i) short explanations of the concepts mentioned in the statement, (40% of total

points for the question)

(ii) your judgement about the statement about whether it is correct/wrong/unclear/

incomplete and a discussion on your judgement, (40% of total points for the

question)

(iii) a correction of the statement.(20% of total points for the question)

(a) (5 points) If for the Gaussian VAR(p) process {xt}, δt = 0, then

– E(xt) = 0;

– V ar(xt) = Ωx;

– E(xtx
′
t−j) = ΛjΩx.

We see that the Gaussian pair xt and xt−j are tending to independence as j →
∞ because E(xtx

′
t−j) = ΛjΩx → 0. This characteristic is called “restricted

memory” or mixing and the process xt is an example of a mixing process. So

in general, the realization of the sequence at time t is not informative about

the realization at either t− j or t+ j, when j is sufficiently large; the present

is not informative about either the remote past or remote future.

A random sequence {xt} is said to be stationary in the wide sense (covariance

stationary), if the mean, the variance and the sequence of j-th order autoco-

variances for j > 0 are all independent of t. A random sequence {xt} is said

to be stationary in the strict sense, if for every k > 0, the joint distributions

of all collections (xt,xt+1, . . . ,xt+k) do not depend in any way on t.

The statement is incorrect. A stationary process does not have to be mixing. A

mixing process does not have to be stationary. Consider the following counter

example. Let xt be an i.i.d. process with E(xt) = 0, and z is any random

variable not depending on t, with E(z) = 0 and independent of xt for all t.

Consider,

yt = xt + z.
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We can show that {yt} is a stationary sequence. To check for the mixing

property of {yt}, we consider

Cov(yt, yt−j)→ V ar(z) > 0,

which implies that yt is not mixing.

(b) (10 points) Let us again consider two unrelated variables xt and yt such that

xt = xt−1 + ut

yt = yt−1 + vt

where ut ∼ i.i.d(0, σ2
x), vt ∼ i.i.d(0, σ2

y), x0 = 0 and y0 = 0. Let’s now run

yt = βxt + et.

Theory show that this regression will be a spurious regression. In a spurious

regression of this setup we expect

– β̂
p−→ 0

– R2 p−→ 0

– tβ̂
p−→ t− dist

But instead we have

– β̂
d−→ f(B)

– R2 d−→ g(B)

– T−1/2tβ̂
d−→ h(B),

where f(B), g(B) and h(B) are functions of Brownian motions. So spurious

regression occurs when we regress a random walk on another random walk. In

this case, the resulting estimator indeed converges to a random walk. But the

t-statistic is inconsistent. Because the t-statistic itself diverges under the null

hypothesis, we can see it from the result T−1/2tβ̂
d−→ h(B).

(c) (10 points) First of all the statement in the question states that, cross-sectional

dependence implies

Cov(ui,tui,s) 6= 0, for t 6= s.

7



This is wrong. Above equation is about being correlated over time. Cross-

sectional dependence is about correlation across cross-section units. The so-

lution proposed to cross-sectional dependence is also wrong. Regression of yi,t

on xi,t and on the lags of yi,t might perhaps help with the serial correlation

in the errors. But it will not help to alleviate the problems of cross-sectional

dependence.

If the error term of the model is cross-sectionally correlated we will have

Cov(ei,tej,t) 6= 0 for some t and some i 6= j.

So the error term that belongs to the model of jth cross section unit is corre-

lated with the error term that belongs to the model of ith cross section unit. A

potential solution to this problem is proposed by Pesaran (2006). He suggests

augmenting the regression model with the cross-sectional averages of the vari-

ables. He shows in his paper that this would overcome the problems caused

by cross-sectional dependence, under certain assumptions.
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Question 2: Modeling and stationarity (25 points

out of 100 points)

Suppose that we have the following bivariate data generating process for wt =

(yt, xt)
′.

wt = Γ1wt−1 + Γ2wt−2 + εt,

where

Γ1 =

(
γ1yy γ1yx
γ1xy γ1xx

)
, Γ2 =

(
γ2yy γ2yx
γ2xy γ2xx

)
and

εt =

(
ε1,t
ε2,t

)
∼ IN

[(
0
0

)
,

(
σ11 σ12
σ21 σ22

)]
,

for t = 1, . . . , T . This model can be written in a vector error correction model

(VECM) form as

∆wt = Awt−1 + B∆wt−1 + εt.

Answer the following questions.

(a) (10 points) Starting from the VAR(2) model derive the VECM and write A

and B in terms of the parameters of the VAR(2).

(b) (10 points) Now consider the vector error correction model. Suppose that A

can be written as

A = αβ′,

where α is 2× 1 and β is 2× 1 and has the form

α =

(
α1

α2

)
, β =

(
1
−β1

)
.

Furthermore, let

B =

(
b11 b12
0 b22

)
.

Derive the conditional error correction model of yt given xt and the past. How

would you test for no-cointegration in this CECM. Under what condition(s) is

xt weakly exogeneous for the parameters of interest φ = {α1, β1}.
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(c) (5 points) Now let γ1yx = 0 and γ2yx = 0 and consider the model for yt only.

Suppose that γ1yy = 0.7 and γ2yy = −0.1. Is yt stationary under these restric-

tions? Show your calculations.
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Answer:

(a) (10 points) Starting from the VAR(2) model derive the VECM and write A

and B in terms of the parameters of the VAR(2).

wt = Γ1wt−1 + Γ2wt−2 + εt

= Γ1wt−1 + Γ2wt−1 − Γ2wt−1 + Γ2wt−2 + εt

= Γ1wt−1 + Γ2wt−1 − Γ2∆wt−1 + εt.

Now we subtract wt−1 from both sides, this yields

∆wt = −wt−1 + Γ1wt−1 + Γ2wt−1 − Γ2∆wt−1 + εt.

Rearranging yields

∆wt = (Γ1 + Γ2 − I2)wt−1 − Γ2∆wt−1 + εt.

This is the VECM form. So we have

A = Γ1 + Γ2 − I2,

B = −Γ2∆wt−1.
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(b) (10 points) We can rewrite the error correction models for yt and xt by imposing

the restrictions given in the question.

∆yt = α1(yt−1 − β1xt−1) + b11∆yt−1 + b12∆xt−1 + ε1,t,

∆xt = α2(yt−1 − β1xt−1) + b22∆xt−1 + ε2,t,

Conditional error correction model of yt given xt can be obtained by including

contemporaneous value of ∆xt in the model of ∆yt. However, this will affect

the coefficients of the model. In order to see how it effects the coefficients of the

model, we need to acknowledge the fact that the error term of the conditional

model should be independent of the error term of the marginal error correction

model for xt. Let εy.x,t be the error term of the conditional error correction

model. It should satisfy the following

E[εy.x,tε2,t] = 0

We can write εy.x,t = ε1,t − aε2,t. Now, let’s plug this in the above equation

E[(ε1,t − aε2,t)ε2,t] = E[ε1,tε2,t]− aE[ε22,t]

= σ12 − aσ22 = 0.

This means that

a =
σ12
σ22

.

The error term of the conditional model then should be

εy.x,t = ε1,t −
σ12
σ22

ε2,t.

In order to have this error term, we need to multiply the marginal ECM of xt

with σ12
σ22

and subtract it from the ECM of yt. This will give us the CECM of

yt given xt.

σ12
σ22

∆xt =
σ12
σ22

α2(yt−1 − β1xt−1) +
σ12
σ22

b22∆xt−1 +
σ12
σ22

ε2,t,

we have

∆yt =

(
α1 −

σ12
σ22

α2

)
(yt−1 − β1xt−1) +

σ12
σ22

∆xt

+ b11∆yt−1 +

(
b12 −

σ12
σ22

b22

)
∆xt−1 + εy.x,t,
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This is the conditional error correction model.

The variable xt are weakly exogenous for the parameters of interest φ in the

model ∆yt if and only if

– φ is a function of the parameters of the conditional model only.

– φ are variation free of the parameters of the marginal ECM for xt.

This is ensures when α2 = 0. In this case the CECM model boils down to

∆yt = α1(yt−1 − β1xt−1) +
σ12
σ22

∆xt + b11∆yt−1

+

(
b12 −

σ12
σ22

b22

)
∆xt−1 + εy.x,t.
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(c) (5 points) Now we go back to the VAR(2) model and consider the model for

yt only, which can be written as

yt = γ1yyyt−1 + γ1yxxt−1 + γ2yyyt−2 + γ2yxxt−2 + ε1,t.

We can now impose the restrictions of the question, which are γ1yx = 0, γ2yx =

0, γ1yy = 0.7 and γ2yy = −0.1. These restrictions yield

yt = 0.7yt−1 − 0.1yt−2 + ε1,t.

In order to check if yt is stationary we can write the AR(2) model in the lag

polynomial form. This will yield

(1− 0.7L+ 0.1L2)yt = ε1,t.

For stability we need the roots of the polynomial |(1 − 0.7z + 0.1z2)| to be

outside the unit circle. The roots are z1 = 5 and z2 = 2. They are both

outside the unit circle, which means that under these restrictions yt is stable.

In addition to stability, the model for yt does not have any mean shifts and the

error term is identically distributions along t. All these makes yt a wide-sense

stationary process.
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Question 3: Asymptotic Derivations (25 points out

of 100 points)

Suppose that we have the following data generating process for {yt} and {xt}:

yt = µ+ yt−1 + ε1,t

xt = δt+ ε2,t,

for t = 1, . . . , T . We assume that ε1,t and ε2,t satisfy the same assumptions as the

error process ut that are indicated in (a) in Page 2. Additionally, we assume:

(i) ε1,t and ε2,t are uncorrelated with each other;

(ii) Long run variances of ε1,t and ε2,t are σ2
1 and σ2

2, respectively;

(iii) y0 = 0 and x0 = 0;

(iv) µ and δ are non-zero constants.

We consider the least squares estimation of the following model:

yt = βxt + et,

using a sample of T observation pairs. Answer the questions below.

(a) (10 points) Derive and discuss the orders of probability and limiting distribu-

tions of

T∑
t=1

x2t ,
T∑
t=1

xtyt.

(b) (5 points) Derive the limiting distribution of the OLS estimator β̂. Interpret

your results.

(c) (10 points) The t−statistic to test for the significance of β can be written as

tβ=0 =

(
T∑
t=1

x2t

)1/2

β̂ σ̂−1e ,

where σ̂2
e = 1

T

∑T
t=1(yt−β̂xt)2. Derive the limiting distribution of this t−statistic.

Interpret your result. (Note: use words if you cannot provide a formal math-

ematical answer.)
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Answer:

(a) (10 points) We need to derive and discuss the orders of probability and limiting

distributions of

T∑
t=1

x2t ,

T∑
t=1

xtyt.

We start with
∑T

t=1 x
2
t . We have xt = δt+ ε2,t, then we can write

T∑
t=1

x2t =
T∑
t=1

(δt+ ε2,t)
2 =

T∑
t=1

[δ2t2 + 2δtε2,t + ε22,t]

= δ2
T∑
t=1

t2 + 2δ
T∑
t=1

tε2,t +
T∑
t=1

ε22,t.

We need to find the limits of the three sums above. For the first term we can

use the standard result (8). This tells us that the first term is O(T 3) and if we

divide it by T 3, it will be bounded. Now if we take the limit as T →∞ we get

1

T 3
δ2

T∑
t=1

t2 → δ2

3
.

The second term is the sum of the multiplication of a time trend and a sta-

tionary random process. We can use the standard result (3) for this. The limit

of this process is given by

T−3/22δ
T∑
t=1

tε2,t
d→ 2δσ2W (1)− 2δσ2

∫ 1

0

W (r)dr.

This means that 2δ
∑T

t=1 tε2,t = Op(T
3/2). Now we analyze the third term,

sum of squared errors. This is something that we are familiar with for many

years. By law of large numbers we have:

T−1
T∑
t=1

ε22,t
p→ σ2

2.

This means that
∑T

t=1 ε
2
2,t = Op(T ). Combining the results for all three terms

yields that the order of
∑T

t=1 x
2
t is dominated by the first term, δ2

∑T
t=1 t

2

which has an order of Op(T
3). This means that

∑T
t=1 x

2
t has order Op(T

3). In

order to find a bounded limit we need to divide it by T 3. Then we have

1

T 3

T∑
t=1

x2t + op(1)
p→ δ2

3
,
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because the second and third terms are Op(T
3/2) and Op(T ), respectively and

asymptotically negligible when we divide them by T 3.

Now we need to analyse
∑T

t=1 xtyt. We can see that yt is not a random walk.

But we can write it in terms of sum of a linear trend and a random walk

(partial sum). We can write

yt = µ+ yt−1 + ε1,t

= µt+ St,

where

St =
t∑

s=1

ε1,s.

Here the standard results given in the first page of the exam applies to St, not

to yt. Now we consider the sum we need to evaluate.

T∑
t=1

xtyt =
T∑
t=1

(δt+ ε2,t)(µt+ St)

= δµ
T∑
t=1

t2 + δ
T∑
t=1

Stt+ µ
T∑
t=1

tε2,t +
T∑
t=1

Stε2,t.

So we need to find the orders and limits of these four terms by using the

standard results. Let’s start with the first term on the right hand side above.

We can use standard result (8) for this. We have

δµ
1

T 3

T∑
t=1

t2 → δµ

3
.

So the first term has order Op(T
3). In order to evaluate the second term we

can use the standard result (6). We have

δ
1

T 5/2

T∑
t=1

Stt = δ
1

T 5/2

T∑
t=1

St−1t+ δ
1

T 5/2

T∑
t=1

ε1,tt
d−→ δσ1

∫ 1

0

rW (r)dr,

In order to obtain this result in addition to standard result (8), we used stan-

dard result (3) which suggests that

δ
1

T 5/2

T∑
t=1

ε1,tt = δ
1

T

(
1

T 3/2

T∑
t=1

ε1,tt

)
= op(1).
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So the second term has order Op(T
5/2), which is smaller than the order of the

first term. Now we analyze the third term µ
∑T

t=1 tε2,t. We can use result

number (3) directly, which implies

µ
1

T 3/2

T∑
t=1

tε2,t
d−→ σ2

{
W (1)−

∫ 1

0

W (r)dr

}
,

which implies that the order of µ
∑T

t=1 tε2,t = Op(T
3/2). For the fourth term,

we can use the standard result (2) which suggests that the sum is order Op(T ).

Combining all these will imply that the sum
∑T

t=1 xtyt is dominated by the

first term and the order is T 3. We can write

1

T 3

T∑
t=1

xtyt + op(1)
p−→ δµ

3
,

This answers the first part of the question.
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(b) (5 points) The distribution of the OLS estimator can be derived simply by

using the results we obtained in the first part of the questions. OLS estimator

can be written as

β̂ =

∑T
t=1 xtyt∑T
t=1 x

2
t

,

We know from part (a) that both the numerator and the denominator has

the order Op(T
3) so if we divide both by T 3 they will converge to something

bounded. We have

β̂ =
1
T 3

∑T
t=1 xtyt

1
T 3

∑T
t=1 x

2
t

p−→
δµ
3
δ2

3

=
µ

δ
.

This result implies that the OLS estimator of β will converge in probability to
µ
δ
, a constant. It should have converge in probability to 0. As long as µ 6= 0,

the estimation of this regression will yield false results. We can consider this

regression as a member of the family of spurious regressions.
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(c) (10 points) The t−statistic to test for the significance of β can be written as

tβ=0 =

(
T∑
t=1

x2t

)1/2

β̂ σ̂−1e ,

where σ̂2
e = 1

T

∑T
t=1(yt − β̂xt)2. In order to derive the limiting distribution of

this t−statistic, we need to use the limit results from parts (a) and (b). We

have the limit result for β̂, we have the limit result of
∑T

t=1 x
2
t . We need to

obtain the limit of σ̂e. For this we write

σ̂e =
1

T

T∑
t=1

(yt − β̂xt)2 =
1

T

T∑
t=1

y2t + β̂2 1

T

T∑
t=1

x2t − 2β̂
1

T

T∑
t=1

ytxt.

We need to find the limits of these terms. We know the limits of almost all

of them, we are missing the limit of only the first term. We can obtain is as

follows.

T∑
t=1

y2t =
T∑
t=1

(µt+ St)
2 = µ2

T∑
t=1

t2 + 2µ
T∑
t=1

Stt+
T∑
t=1

S2
t .

Using standard results (8), (6), (3) and (5) yields

1

T 3

T∑
t=1

y2t = µ2 1

T 3

T∑
t=1

t2 + op(1)
p−→ µ2

3
.

Now we go back to analysing σ̂e. If we combine all the limit results we have

σ̂e = T 2 1

T 3

T∑
t=1

y2t + T 2β̂2 1

T 3

T∑
t=1

x2t − T 22β̂
1

T 3

T∑
t=1

ytxt.

Then we have

1

T 2
σ̂e

p−→ µ2

3
+
µ2

δ2
δ2

3
− 2

µ

δ

µδ

3

=
µ2

3
+
µ2

3
− 2

µ2

3
= 0.

We need to rewrite the test statistic now to have bounded limits for all the

components. We have

√
Ttβ=0 =

(
1

T 3

T∑
t=1

x2t

)1/2

β̂
1

1
T 2 σ̂e

p−→∞,

because 1
T 2 σ̂e

p−→ 0. This means that the t−statistic is not consistent.
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Question 4: Empirical Application (25 points out

of 100 points)

(a) An econometrics student from the VU wants to analyze money demand in the

Netherlands using annual economic time series for the period 1917 − 2017.

The variables she uses are the log of money stock (denoted by mt), the log of

the price index (denoted by pt), the log of real GDP (denoted by yt) and the

central bank discount rate (denoted by rt).

(i) (5 points) She runs Dickey-Fuller tests (based on regression models with

both a constant and a trend: xt = α + δt + ρxt−1 + ut) for the levels

of mt, pt, yt and rt and also for the first differences of these series. The

outcomes are as follows

Variables t−stat t−stat 2.5 % t−distribution 2.5% Dickey-fuller
levels first critical critical

differences values values
mt -2.04 -4.30 -1.98 -3.95
pt -2.98 -7.23 -1.98 -3.95
yt -1.45 -4.00 -1.98 -3.95
rt -0.94 -3.97 -1.98 -3.95

Explain why she is doing this analysis. What is being tested? What is

the test regression? What are the null hypothesis and the alternative

hypothesis? How can we draw conclusions from the results in the table?

What are the conclusions?

(ii) (10 points) In her report she reports the following regression result as

well:

∆̂mt = −0.12
(0.03)

(mt−1 − 3.12
(0.56)

yt−1 − 0.18
(0.03)

rt−1) + 0.68
(0.34)

∆mt−1 + 0.10
(0.20)

∆pt−1,

R2 = 0.56, where the numbers in the parentheses are the associated

standard errors. Explain why she reports this result. What is she in-

vestigating? Interpret the results. Is it correct to estimate this single

equation model? Do you have any suggestions for alternative models and

estimators that would improve the accuracy of the conclusions?
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(b) Another econometrics student from the VU is analyzing a panel data set on

yearly housing expenses of 434 families over 5 years. Previous research shows

that housing expenses data is dynamic in nature due to the presence of the

lagged version of this variables in its model and it is highly suspected that

an individual specific effect is present in the error term of the model that

represents the heterogeneity among the families. The student realizes these

and assumes the following model, where he denotes the variable by ci,t:

ci,t = λci,t−1 + ui,t,

where ui,t = µi + εi,t. Then she regresses c̃i,t = ci,t − T−1
∑T

t=1 ci,t on c̃i,t−1 =

ci,t−1 −
∑T

t=1 ci,t−1 and obtains the pooled OLS estimator as

λ̂FE =

∑N
i=1

∑T
t=1 c̃i,tc̃i,t−1∑N

i=1

∑T
t=1 c̃

2
i,t−1

.

She finds that λ̂FE = 0.8. She thinks that she can rely on this result to say

something reliable about the dimension of the dynamic nature of household

consumption.

(i) (5 points) Describe the situation faced by this student. Motivate the use

of λ̂FE as an estimator. What is the problem with this estimator? When

does it occur? Why does it occur? Explain in detail.

(ii) (5 points) Propose and discuss briefly an alternative estimator that is

more proper/optimal to be used in this setup.
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Answer:

(a) This is an empirical example of testing for unit roots and estimating the

cointegrating relations.

(i) (5 points) This part is about Dickey-Fuller tests. The test regression

is

xt = α + δt+ ρxt−1 + ut.

So it is a Dickey-Fuller test regression with a constant and a drift.

The econometrician want to test for unit roots in her variables. This

is to test for the hypothesis

H0 : ρ = 1,

against the alternative

H1 : |ρ| < 1.

If xt represents the levels of these variables, then it means the econo-

metrician wants to test for the unit root in levels. If xt represents the

first differences of the variables then it means that the econometrician

wants to test for presence of unit roots in the first differences. The

test statistic obtained from running the regression above does not

have a standard distribution. It has nonstandard distribution. And

if the errors of the model are serially uncorrelated this distribution is

nuisance parameter free. And the critical values of this distribution

is tabulated by Dickey-Fuller. The econometrician needs to use the

2.5% critical values of the Dickey-Fuller distribution to draw con-

clusions about the hypothesis. In this case the 2.5% t-distribution

critical values are useless.

By looking at the results in the table, we can conclude that the null

hypothesis of a unit root cannot be rejected for the levels of any of

the variables. When we look at the results of first differences we see

that the for all variables we reject the null of unit root. So we can

conclude that all the series involved are I(1) series.
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(ii) (10 points) The model she is estimating is the error correction model

for mt, the log of the money stock. In part (i) we found that all

the variables are I(1). After this finding, it is natural to investigate

if there is a long-run relation between these variables, whether they

share a common stochastic trend. This can be done by using error

correction models. So the econometrician is interested in the cointe-

grating relation between mt−1, yt−1 and rt−1. Interestingly, she does

not include the log of the price index in her analysis. The results

suggest that the error correction term (mt−1−β1yt−1−β2rt−1) is sig-

nificantly in the model. This is implied by the significant coefficient

estimate of α in the model

∆mt = α(mt−1 − β1yt−1 − β2rt−1) + γ1∆mt−1 + γ2∆pt−1 + εt.

The results suggest that all coefficients are significantly different than

zero, except γ2, which is the coefficient of the first difference of ∆pt−1.

It is not correct to estimate a single equation error correction model

before testing for certain assumptions. First of all, let’s consider

the case that there is only one (up to a normalization) cointegrating

relation in the system, that is (mt−1−β1yt−1−β2rt−1). Estimating the

ECM for ∆mt only causes loss of efficiency if the same error correction

term is in the models for yt and rt. In order to alleviate the loss of

efficiency, the econometrician should estimate the conditional error

correction model for mt, conditional on yt and rt. In this case for

efficiency mt and rt has to be weakly exogenous for the parameters of

the conditional error correction model. Now let’s move away from the

assumption of a single cointegrating relation. Suppose that there are

more than one cointegrating vectors that are linearly independent

from each other. Then, this single equation estimation will yield

meaningless results. In this case we need to adapt a system estimation

technique. This is provided by Johansen. First, we need to determine

the number of linearly independent cointegrating vectors by using

a Trace test or a maximum eigenvalue test. Then, after imposing

the estimated number of cointegrating vectors, we need to use full

information maximum likelihood estimation technique to estimate

the cointegrating vectors and all other model parameters.
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(b) This is an empirical exercise involving a panel data approach.

(i) (5 points) The student is facing a panel data problem that occurs

when there is a dynamic panel data model with fixed effects. In the

model she is analysing, the error term follows

ui,t = µi + εi,t.

Here, µi is the unobserved fixed effects. In short panels, where one has

a large dimension for the cross-section units but a small dimension for

the time-periods, this setup creates a problem. The dynamic nature

of the panel creates a bias. Because yi,t is a function of µi. yi,t−1 is

also a function of µi. Hence the regressor yi,t−1 is correlated with the

error term ut,i. The OLS estimator is biased and inconsistent even if

the vi,t are serially uncorrelated. For this reason, she decides to use a

fixed effects estimator. The fixed effects transformation of the model

eliminates the µi from the models of individual cross-section units.

Then one can use

λ̂FE =

∑N
i=1

∑T
t=1(yi,t−1 − yi,−1)(yi,t − yi)∑N

i=1

∑T
t=1(yi,t−1 − yi,−1)2

,

as an estimator. This estimator is problematic too. It suffers from

the well known Nickell bias problem. This is due to the following

reason. Let

yi,t − yi = λ(yi,t−1 − yi,−1) + (εi,t − εi),

In the model above

· yi,t−1 is correlated with εi by construction: the latter average

contains εi,t−1, which is correlated with yi,t−1.

· εi,t is correlated with yi,−1.

Nickell (1981), showed that for these reasons the within estimator

(fixed effects estimator) is biased of order O(1/T ) and it is inconsis-

tent for N large and T small.
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(ii) (5 points) An alternative to the fixed effects estimator is the Anderson-

Hsiao estimator. This estimator is unbiased but it is not the most

optimal estimator. The idea behind this estimator is as follows. The

first difference of the original model such that

yi,t = λyi,t−1 + µi + εi,t,

can be transformed into

∆yi,t = λ∆yi,t−1 + ∆εi,t,

This transformation removes the individual effect but there is still

correlation between the first differenced lagged dependent variables

and the error term of the new model ∆vi,t. But a straightforward

instrumental variables estimator is available: We may construct in-

struments for ∆yi,t−1 from the second and third lags of yi,t: yi,t−2

or ∆yi,t−2. Using yi,t−2 or ∆yi,t−2 as instruments for ∆yi,t−1 solves

the correlation problem if vi,t is i.i.d.: the instruments will be highly

correlated with ∆yi,t−1 and uncorrelated with the error term ∆vi,t.

This IV estimator leads to consistent estimates, but these estima-

tors are not necessarily efficient, because it does not make use of all

the available moment conditions and does not take into account the

differenced structure on the residual disturbances.
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