Name		 	
Student nur	nber		

The use of books, internet enabled devices, including smart phones and tablets, is not permitted.

Please write all work and answers with PEN.

Points: 1. (5 pts), 2. (10 pts), 3. (10 pts), 4. (15 pts), 5. (10 pts), 6. (15 pts), 7. (15 pts), 8. (10 pts), 9. (10 pts).

ESSAY. Write your work and answer on a separate sheet.

- 1) Find the volume of a parallelepiped spanned by vectors from the origin to the three points (1, 1, -3), (-1, 3, -1), and (3, 5, 7).
- 2) Find the perimeter of the astroid curve $x = 2 \cos^3 \theta$, $y = 2 \sin^3 \theta$.
- 3) Find the Taylor polynomial of degree 2 for the function $(x + y)^2 \ln(x + y)$ about the point (0, 1).
- 4) Do the equations $x^2 + y^2s + yt^2 = 13$ and $y^2 + x^2s + xt^2 = 9$ define s and t as functions of x and y near the point (x, y, s, t) = (1, 2, 1, -2)? If so, find $\frac{\partial s}{\partial y}$ at that point.
- 5) Evaluate $\int \int_{R} y^2 dA$, where R is the region bounded by y = 2x, y = 5x, and x = 2.
- 6) Find the maximum and minimum values of the function $f(x,y) = x^2 + y^2$ on the ellipse $5x^2 + 6xy + 5y^2 8 = 0$.
- 7) Find the distance between the lines $\frac{x}{2} = \frac{y-2}{2} = \frac{z-2}{-1}$ and $\frac{x-3}{2} = \frac{y-3}{-1} = \frac{z-1}{2}$.
- 8) Use polar coordinates to evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{5/2} dy dx$.
- 9) Evaluate the integral $\int \int \int_R 30xy \, dV$, where R is the region defined by the inequalities $0 \le y \le 1, \ 0 \le z \le y, \ 0 \le x \le z$.