| Name |  |  |  |
|------|--|--|--|
|      |  |  |  |

Student number \_\_\_\_\_

The use internet enabled devices, including smart phones and tablets, is not permitted.

Please write all work and answers with PEN.

Points: 1. (10 pts), 2. (10 pts), 3. (10 pts), 4. (10 pts), 5. (10 pts), 6. (10 pts), 7. (10 pts), 8. (15 pts), 9. (15 pts).

## ESSAY. Write your work and answer on a separate sheet.

- 1) Find the arc length of the space curve given by the vector equation  $\mathbf{r} = t \mathbf{i} + 2\ln(t) \mathbf{j} + (1 \frac{2}{t}) \mathbf{k}$ ,  $1 \le t \le 2$ .
- 2) Find the two unit vectors orthogonal to both  $\mathbf{a} = 3\mathbf{j} + 2\mathbf{k}$  and  $\mathbf{b} = -\mathbf{i} 2\mathbf{k}$ .
- 3) Find the Taylor polynomial of degree 2 for the function  $f(x, y) = \frac{1}{x}e^{y}$  expanded around (x,y)=(1,0).
- 4) Find the distance between the lines  $\frac{x}{2} = \frac{y-2}{2} = \frac{z-2}{-1}$  and  $\frac{x-3}{2} = \frac{y-3}{-1} = \frac{z-1}{2}$ .
- 5) Let  $z = f(x,y) = x^y + y$  where  $x = u^2 + v^2 4$  and y = uv 1. Find the value of  $\frac{\partial z}{\partial u}$  at (u, v) = (2, -1). Hint: xy = eyln(x)
- 6) Use Lagrange multipliers to find the maximum and minimum values of the function  $f(x, y) = xy^2$  on the circle  $x^2 + y^2 = 3$ .
- 7) Evaluate  $\int \int_{R} y^2 dA$ , where R is the region bounded by y = 2x, y = 5x, and x = 2.
- 8) Evaluate the integral  $\int_{0}^{3/2} \int_{x\sqrt{3}}^{\sqrt{9-x^2}} 2xy \, dy dx$  using polar coordinates.
- 9) Evaluate  $\int \int \int_E 15 x^2 dV$ , where E is the region in 3-space described by the inequalities  $0 \le x \le 2 y z$ ,  $0 \le z \le 2 y$ , and  $0 \le y \le 2$ .