Exam Measure Theory October 21, 2015 ## Give crisp and clear argumentations. This exam consists of four exercises with, in total, nine parts. In the grading, all these nine parts will be weighted equally. 1. Let X be a set and \mathcal{F} a family of subsets of X with the following three properties below: $$\emptyset \in \mathcal{F},$$ $$A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F},$$ $$((A_j)_{j \in \mathbb{N}} \subset \mathcal{F} \text{ and } A_1 \subset A_2 \subset A_3 \subset \cdots) \Longrightarrow \bigcup_{j \in \mathbb{N}} A_j \in \mathcal{F}.$$ Show that \mathcal{F} is a σ -algebra. - **2.** Consider a measure space (X, \mathcal{A}, μ) , with $\mu(X)$ finite. Let $A_1, \dots, A_m \in \mathcal{A}$. Let n be a positive integer $\leq m$. Let V_n be the set of all $x \in X$ which belong to at least n of the sets A_1, \dots, A_m . - (a) Show that V_n is measurable, i.e. that $V_n \in \mathcal{A}$. - (b) Show that if $V_n = X$, then there is a $j \in \{1, \dots, m\}$ with $\mu(A_j) \ge \frac{\mu(X) n}{m}$. - (c) Use the result in (b) to show that, in the more general case where V_n may be different from X, there is a $j \in \{1, \dots, m\}$ with $\mu(A_j) \geq \frac{\mu(V_n)n}{m}$. - **3.** Let \mathcal{J} be the family of all infinite subsets of \mathbb{Q} . - (a) Show that the σ -algebra on \mathbb{Q} generated by \mathcal{J} is the family of *all* subsets of \mathbb{Q} (which we will denote by \mathcal{P}). - (b) Let μ be the counting measure on \mathcal{P} (i.e. $\mu(A) = \infty$ if A is infinite and $\mu(A)$ is equal to the number of elements of A if A is finite). Does there exist a measure $\nu \neq \mu$ on \mathcal{P} with the property that $\nu(A) = \mu(A)$ for all $A \in \mathcal{J}$? - **4.** Let $f: \mathbb{R} \to \mathbb{R}^2$ be the function f(x) = (x, x). - (a) Show that f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R}^2)$ measurable. - (b) Let V be a non-Borel measurable subset of \mathbb{R} . Show that the set $A := \{(x, x) : x \in V\}$ is not Borel measurable. - (c) Show that A is in the completion of $\mathcal{B}(\mathbb{R}^2)$.