Exam Measure Theory

February 11, 2015, 18.30-21.15.

- **1.** Let $A \subset \mathbb{R}$ be a measurable set with $\lambda(A) < \infty$, where λ denotes Lebesgue measure. Show that for any $\epsilon > 0$, there exists a bounded set $B \subset A$ such that $\lambda(A \setminus B) < \epsilon$. (A set is called bounded if it is contained in an interval of the form [-M, M], for some $0 < M < \infty$.)
- **2.** Let $X = [0,1] \times \{0,1\}$. Let \mathcal{A} be the collection of all sets $E \subset X$ such that the sections $E_x = \{y : (x,y) \in E\}$ are either empty or coincide with $\{0,1\}$ for all x, except possibly for countably many points x.
- (a) Show that \mathcal{A} is a sigma-algebra.

Let μ be the function that assigns to every set $E \in \mathcal{A}$ the cardinality of the intersection of E with $[0,1] \times \{0\}$.

- (b) Show that μ is a measure on \mathcal{A} .
- **3.** (a) Let $A \subset [0,1]$ be a measurable set with the following properties:
 - 1. $0 < \lambda(A) < 1$;
 - 2. $\lambda(A \cap J) > 0$ for all open intervals $J \subset [0,1]$.

Let f be the indicator function of A. We divide [0,1] into n intervals I_1, I_2, \ldots, I_n of length 1/n each. With this partition, we can compute upper and lower Riemann sums, denoted by U_n and L_n respectively. (These are the sums that we use to bound the Riemann integral from above and below respectively.)

- (a) Show that $U_n = 1$ and that $L_n \leq \lambda(A)$.
- (b) Is f Riemann integrable? Is f Lebesgue integrable? Explain your answers.
- (c) Construct an example of a set with properties 1. and 2. above.
- **4.** A measure μ on (Ω, \mathcal{F}) is called *atom free* if $\mu(A) > 0$ implies that there exists $B \subset A$ such that $0 < \mu(B) < \mu(A)$. (A and B are elements of \mathcal{F} .) No let λ be Lebesgue measure on [0,1] and $A \subset [0,1]$ be measurable such that $\lambda(A) > 0$. Define $f: [0,1] \to [0,1]$ as

$$f(x) = \lambda(A \cap [0, x]).$$

- (a) Show that f is continuous.
- (b) Show that λ is atom free.

- **5.** Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function.
- (a) Show that the graph of f, that is, the set $\{(x,y):y=f(x)\}$, is a measurable set in the product space $\mathbb{R}\times\mathbb{R}$.
- (b) Use Fubini's theorem to prove that the graph has two-dimensional Lebesgue measure zero.
- **6.** 1. Let μ be a finite measure on (Ω, \mathcal{F}) . Consider measurable functions

 f_1, f_2, \ldots on Ω such that $|f_n(x)| \leq C$ for all n and all $x \in \Omega$, where $C < \infty$. Suppose that $\lim_{n \to \infty} f_n(x) = f(x)$ μ -a.e. Show that

$$\lim_{n\to\infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu.$$