Exam Measure Theory

December 16, 2014, 12.00-14.45

- **1.** Let λ be Lebesgue measure on \mathbb{R} , and let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = |x|. Describe the measure $\lambda \circ f^{-1}$.
- **2.** Let X be a set and let (Y, \mathcal{A}) be a measurable space. Let $T: X \to Y$ be surjective. Finally, $f: X \to \mathbb{R}$ is a function from X to \mathbb{R} .
- (a) Suppose there exists an \mathcal{A}/\mathcal{B} measurable function $g:Y\to\mathbb{R}$ such that $f=g\circ T$. Show that f is $\sigma(T)/\mathcal{B}$ measurable.

For the remainder of this exercise suppose that $f: X \to \mathbb{R}$ is $\sigma(T)/\mathcal{B}$ measurable.

- (b) Suppose that T(x) = T(x'). Show that for all $E \in \sigma(T)$ we have $x \in E$ if and only if $x' \in E$.
- (c) Show that for x and x' as in (b) we have that f(x) = f(x').
- (d) Finally show that there exists an \mathcal{A}/\mathcal{B} measurable function $h: Y \to \mathbb{R}$ such that $f = h \circ T$.
- **3.** (a) Formulate the Dominated Convergence Theorem.
- (b) Let, for $n, m = 1, 2, ..., a_n(m)$ and a_n be real numbers such that $a_n(m) \to a_n$ as $m \to \infty$. Use the Dominated Convergence Theorem to formulate a condition under which $\sum_{n=1}^{\infty} a_n(m) \to \sum_{n=1}^{\infty} a_n$ as $m \to \infty$. Explain your answer.
- **4.** Let f be a non-negative measurable function on a sigma-finite measure space (X, \mathcal{F}, μ) . Let λ denote Lebesgue measure on \mathbb{R} . Show that

$$\int_X f d\mu = (\mu \times \lambda) \left(\left\{ (x,y) \in X \times \mathbb{R}; 0 \le y \le f(x) \right\} \right).$$

Do this by first showing this is true when f is an indicator function, then for f a simple function, and finally for f a non-negative function.

- **5.** Let f_1, f_2, \ldots be measurable functions on a sigma-finite measure space (X, \mathcal{A}, μ) . Consider the following theorem: If $\sum_{n=1}^{\infty} \int_{X} |f_n| d\mu < \infty$, then $\sum_{n=1}^{\infty} f_n$ converges almost everywhere and $\int_{X} \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} \int_{X} f_n d\mu$. Prove this by using Fubini's theorem on $X \times \{1, 2, \ldots\}$.
- **6.** Let λ be Lebesgue measure on \mathbb{R} and define on \mathcal{B} the function $\mu(A)$ as the number of integers contained in A. Which of the following two statements is (are) true: (1) $\lambda \ll \mu$; (2) $\mu \ll \lambda$. Motivate your answer.