
Vrije Universiteit Amsterdam

Department of Mathematics

Exam Mathematical Statistics (XB 0049)
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You are not allowed to use calculators, phones, laptops or other tools. Clearly put your name
and student number on all sheets that you submit. Your answer may contain quantiles from
a distribution. Expressions for densities and quantiles are given on page 3 of the exam.
Unless stated differently, always add an explanation to your answer.

1. Let X1, ..., Xn be independent random variables with density

pθ(x) =

󰀫
0 x < 1

θx−(θ+1) x ≥ 1,

where θ > 1 is unknown.

(a) [2 pt]. Determine the method of moments estimator for θ.

(b) [2 pt]. Find a one-dimensional sufficient statistic for θ.

(c) [2 pt]. Determine the maximum likelihood estimator for θ.

(d) [3 pt]. Determine the Bayes estimator for θ with respect to the prior π(θ) = e1−θ,
for θ > 1 and 0 elsewhere.

2. LetX1, . . . , Xn be independent random variables with N(0, σ2) distribution with σ2 > 0
unknown.

(a) [2 pt]. Show that (
󰁓n

i=1 X
2
i ) /σ

2 is a pivot for σ2.

(b) [2 pt]. Determine a confidence interval for σ2 of confidence level 1 − α, based on
the distribution of the pivot in part (a).

3. Let X1, . . . , Xn be independent random variables with probability density

pθ(x) = θ2xe−θx, x ≥ 0

and pθ(x) = 0, for x < 0, where θ > 0 is unknown. This density corresponds to that of
the Gamma distribution with parameters 2 and θ. It can be shown that the maximum

likelihood estimator for θ is given by 󰁥θ = 2/X (in the following you don’t need to show
this yourself).

(a) [3 pt]. Determine the likelihood ratio test statistic for testing H0 : θ = θ0 against
H1 : θ ∕= θ0 and show that the approximate confidence interval for θ is given by
the set 󰀋

θ > 0 : log(θX/2)− θX/2 ≥ −1− χ2
1,1−α/4n

󰀌
.

(b) [3 pt]. Compute the Fisher information and give an approximate confidence inter-
val for θ with confidence level 1 − α based on the asymptotic distribution of the
maximum likelihood estimator.
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4. Consider the linear regression model

Yi = βxi + ei, for i = 1, . . . , n,

where e1, . . . , en are independent random variables with the N(0, σ2) distribution.

(a) [2 pt]. Show that the least squares estimator for β is given by

󰁥β =

󰁓n
i=1 xiYi󰁓n
i=1 x

2
i

.

(b) [1 pt]. Another estimator for β is given by

󰁨β =
Y

x
=

󰁓n
i=1 Yi󰁓n
i=1 xi

.

Show that 󰁨β is an unbiased estimator for β.

(c) [3 pt]. The mean squared error for 󰁥β is given by

MSE(󰁥β) = σ2

󰁓n
i=1 x

2
i

.

Determine the mean squared error for 󰁨β and show that it is larger than MSE(󰁥β).

You may use

• that the least squares estimator is unbiased for β;

• the inequality of Cauchy-Schwarz:
󰀣

n󰁛

i=1

aibi

󰀤2

≤
󰀣

n󰁛

i=1

a2i

󰀤󰀣
n󰁛

i=1

b2i

󰀤
.

5. Let X1, . . . , Xn be independent random variables with distribution function

Fθ(x) =

󰀫
1− eθ−x x ≥ θ

0 x < θ,

for some unknown θ > 0. We want to test H0 : θ ≤ 1 against H1 : θ > 1 with test
statistic

T = X(1) = min{X1, . . . , Xn}
at significance level 0 < α0 < 1. We reject H0 : θ ≤ 1 for large values of X(1).

(a) [2 pt]. Show that

Pθ(X(1) ≥ t) =

󰀫
en(θ−t) t ≥ θ

1 t < θ.

(b) [3 pt]. Give the definition of the size of the test and show that the critical region
is given by

K =

󰀝
(x1, . . . , xn) : x(1) ≥ 1− logα0

n

󰀞
.
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Distributions and notation

• If X ∼ N(µ, σ2), then its density is given by p(x) = (2πσ2)−1/2 exp
󰀓
− (x−µ)2)

2σ2

󰀔
and

Φ(x) := P(X ≤ x). The (lower) quantile ξα is defined by Φ(ξα) = α, for α ∈ (0, 1).

• If X ∼ χ2
k, then χ2

k,α is defined by P(X ≤ χ2
k,α) = α.

• If X ∼ tk, then tk,α is defined by P(X ≤ tk,α) = α.

• If X ∼ Ga(α, β), then its density is given by p(x) = βα

Γ(α)
xα−1e−βx1(0,∞)(x). EX = α/β,

Var(X) = α/β2. The special case of α = 1 corresponds to the exponential distribution
with parameter β.

• If X ∼ Bin(n, p), then P(X = x) =
󰀃
n
x

󰀄
px(1 − p)n−x, for x ∈ {0, 1, . . . , n}. EX = np,

Var(X) = np(1− p).

• If X ∼ Beta(α, β), then its density is given by p(x) = B(α, β)−1xα−1(1−x)β−11[0,1](x).
EX = α/(α + β), Var(X) = αβ/ ((α + β)2(α + β + 1))
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1. (a) The expectation of X1 is

Eθ X1 =

󰁝 ∞

1

xpθ(x) dx =

󰁝 ∞

1

xθx−(θ+1) dx

= θ

󰁝 ∞

1

x−θ dx = θ

󰀗
−x−θ+1

θ − 1

󰀘∞

1

=
θ

θ − 1
.

The method of moments estimator is the solution of

X =
θ

θ − 1
⇔ (θ − 1)X = θ ⇔ θ(X − 1) = X ⇔ θ =

X

X − 1

(b)

L(θ;X1, . . . , Xn) =
n󰁜

i=1

θX
−(θ+1)
i = θn

󰀣
n󰁜

i=1

Xi

󰀤−θ−1

= gθ(V (X1, . . . , Xn))h(X1, . . . , Xn)

We can hence take h ≡ 1 and V (X1, . . . , Xn) =
󰁔n

i=1 Xi which, by the factorisation
theorem, is sufficient for θ.

(c) To determine the ML estimator we compute the loglikelihood

logL(θ;X1, . . . , Xn) = n log θ − (θ + 1)
n󰁛

i=1

logXi

Differentiation gives

dL

dθ
=

n

θ
−

n󰁛

i=1

logXi = 0 ⇔ θ =
n󰁓n

i=1 logXi

.

Since the second derivative is ∂2 logL/∂θ2 = −n/θ2 < 0, this is a maximum.
Hence, the ML estimator is given by n/

󰁓n
i=1 logXi.

(d) The posterior density is proportional to

pθ(X1, . . . , Xn)π(θ) =
n󰁜

i=1

θX
−(θ+1)
i e1−θ

= θne−(θ+1)
󰁓n

i=1 logXie1−θ

= θne−θ(1+
󰁓n

i=1 logXi)e1−
󰁓n

i=1 logXi)

∝ θne−θ(1+
󰁓n

i=1 logXi

The right hand side is proportional to the gamma density

θα−1λαe−λθ

Γ(α)

with α = n + 1 and λ = 1 +
󰁓n

i=1 logXi. Hence the posterior density must
be a gamma distribution with these parameters and the Bayes estimator is the
corresponding mean

α

λ
=

n+ 1

1 +
󰁓n

i=1 logXi
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2. (a) First note that for each i = 1, . . . , n, the random variable Zi = Xi/σ has a N(0, 1)
distribution, which does not depend on σ2. This means that every combination of
X1/σ, . . . , Xn/σ has a distribution that no longer depends on σ2.

In particular, the distribution of

󰁓n
i=1 X

2
i

σ2
=

n󰁛

i=1

(Xi/σ)
2

no longer depends on σ2, which means that it is a pivot for σ2.

(b) From part (a) we have that

󰁓n
i=1 X

2
i

σ2
=

n󰁛

i=1

(Xi/σ)
2 =

n󰁛

i=1

Z2
i

which is the sum of n independent squared N(0, 1) distributed random variables.
By definition this has a χ2-distribution with parameter n.

This means that

P

󰀕
χ2
n,α/2 ≤

󰁓n
i=1 X

2
i

σ2
≤ χ2

n,1−α/2

󰀖
= 1− α

or equivalently

P

󰀣󰁓n
i=1 X

2
i

χ2
n,1−α/2

≤ σ2 ≤
󰁓n

i=1 X
2
i

χ2
n,α/2

󰀤
= 1− α.

The confidence interval of level 1− α for σ2 is then given by
󰀥󰁓n

i=1 X
2
i

χ2
n,1−α/2

,

󰁓n
i=1 X

2
i

χ2
n,α/2

󰀦
.

3. (a) The likelihood ratio statistic is defined by

λn =
supθ∈Θ L(θ)

supθ∈Θ0
L(θ)

=
L(󰁥θ)
L(θ0)

=

󰁔n
i=l

󰁥θ2Xie
−󰁥θXi

󰁔n
i=l θ

2
0Xie−θ0Xi

=
󰁥θ2n (

󰁔n
i=1 Xi) e

−󰁥θ
󰁓n

i=1 Xi

θ2n0 (
󰁔n

i=1 Xi) e−θ0
󰁓n

i=1 Xi

=

󰀣
󰁥θ
θ0

󰀤2n

exp
󰀓
−n(󰁥θ − θ0)X

󰀔

=

󰀕
2

θ0X

󰀖2n

exp
󰀃
−n(2− θ0X)

󰀄
.
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This means that

2 log λn = 4n(log 2− log(θ0X))− 2n(2− θ0X).

Since the likelihood ratio test rejects for large values of λn and that the distribution
of 2 log λn can be approximated by a χ2

1 distribution, if follows that the likelihood
ratio confidence region of confidence level 1− α is then given by the set

󰀋
θ : 4n(log 2− log(θX))− 2n(2− θX) ≤ χ2

1,1−α

󰀌

=
󰀋
θ : (log 2− log(θX))− (1− θX/2) ≤ χ2

1,1−α/4n
󰀌

=
󰀋
θ : log(θX)− log 2 + (1− θX/2) ≥ −χ2

1,1−α/4n
󰀌

=
󰀋
θ : log(θX/2)− θX/2 ≥ −1− χ2

1,1−α/4n
󰀌
.

(b) We have

ℓθ(x) = log pθ(x) = 2 log θ + log x− θx

ℓ̇θ(x) =
∂ℓθ(x)

∂θ
=

2

θ
− x

ℓ̈θ(x) =
∂2ℓθ(x)

∂θ2
= − 2

θ2
.

The Fisher information can be computed by means of the definition

iθ = varθ ℓ̇θ(X1) = varθ

󰀕
2

θ
−X1

󰀖
= varθX1.

As the density corresponds to that of a Gamma distribution with parameters 2
and θ, the variance is given in the book: 2/θ2.

It is easier to use directly

−iθ = Eθ ℓ̈θ(X1) = −
󰀕
− 2

θ2

󰀖
=

2

θ2
.

The approximated confidence interval is given by

󰁥θ ± 1󰁳
n󰁥iθ

ξ1−α/2

where 󰁥θ is the maximum likelihood estimator and iθ can be estimates, either by
plug-in

󰁥iθ = i󰁥θ =
2

󰁥θ2
or by means of the observed information

󰁥iθ = − 1

n

n󰁛

i=1

ℓ̈󰁥θ(Xi) = − 1

n

n󰁛

i=1

󰀕
− 2

󰁥θ2

󰀖
=

2

󰁥θ2
.

This results in confidence interval

󰁥θ ±
󰁥θ√
2n

ξ1−α/2 =
2

X
± 2

X

ξ1−α/2√
2n
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4. (a) The least squares estimator is the solution of

min
β

n󰁛

i=1

(Yi − βxi)
2

We find that

∂

∂β

n󰁛

i=1

(Yi − βxi)
2 = −2

n󰁛

i=1

(Yi − βxi)xi = −2
n󰁛

i=1

xiYi + 2β
n󰁛

i=1

x2
i .

This is equal to zero if

β =

󰁓n
i=1 xiYi󰁓n
i=1 x

2
i

.

Furthermore, the second derivative is ∂2/∂β2 = 2
󰁓n

i=1 x
2
i > 0, so that this is a

minimum. This means that the least squares estimator is given by

󰁥β =

󰁓n
i=1 xiYi󰁓n
i=1 x

2
i

.

(b)

E 󰁨β = E

󰀗󰁓n
i=1 Yi󰁓n
i=1 xi

󰀘
=

󰁓n
i=1 E[Yi]󰁓n
i=1 xi

=

󰁓n
i=1(βxi + E ei)󰁓n

i=1 xi

=
β
󰁓n

i=1 xi󰁓n
i=1 xi

= β.

(c) Because 󰁥β is unbiased the mean squared error is given by

MSE(󰁨β) = var(󰁨β) = var

󰀕󰁓n
i=1 Yi󰁓n
i=1 xi

󰀖

=
1

(
󰁓n

i=1 xi)
2

n󰁛

i=1

var(Yi) =
1

(
󰁓n

i=1 xi)
2

n󰁛

i=1

var(ei)

=
1

(
󰁓n

i=1 xi)
2

n󰁛

i=1

σ2 =
nσ2

(
󰁓n

i=1 xi)
2 .

We must show that

MSE(󰁥β) ≤ MSE(󰁨β) ⇔ σ2

󰁓n
i=1 x

2
i

≤ nσ2

(
󰁓n

i=1 xi)
2

⇔
󰀣

n󰁛

i=1

xi

󰀤2

≤ n

n󰁛

i=1

x2
i

This precisely Cauchy-Schwarz with ai = 1 and bi = xi.

5. (a) Because X1, . . . , Xn are independent with the same distribution function Fθ, we
have that

Pθ(X(1) ≥ cα0) = Pθ(X1 ≥ cα0 , . . . , X1 ≥ cα0)

= Pθ(X1 ≥ cα0) · · ·Pθ(X1 ≥ cα0)

= (1− Fθ(cα0))
n

=

󰀫
en(θ−cα0 ) θ ≤ cα0

1 θ > cα0 .
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(b) Since we reject for large values of T , the critical region is of the form KT = [c,∞).

This means that the size of the test is defined by

α = sup
θ≤1

Pθ(X(1) ≥ cα0) = sup
θ≤1

en(θ−cα0 ).

where cα0 should be chosen as small as possible such that α ≤ α0.

The function θ 󰀁→ en(θ−cα0 ) increases on θ ∈ (0, cα0 ] and then remains constant
equal to 1. This means that the largest value of Pθ(X(1) ≥ cα0) that is less than
α0, is attained at θ = 1, so that

α = sup
θ≤1

en(θ−cα0 ) = en(1−cα0 ).

To find cα0 , we must solve

en(1−cα0 ) ≤ α0 ⇔ n(1− cα0) ≤ logα0 ⇔ cα0 ≥ 1− logα0

n
.

Since we must choose cα0 as small as possible, we conclude that cα0 = 1−(logα0)/n,
and

K =

󰀝
(x1, . . . , xn) : x(1) ≥ 1− logα0

n

󰀞
.
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