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dr. R. Paradiso dr. A. Zocca

15 February 2022, 18:45 – 21:30

The exam consists of five exercises worth a total of 100 points = 12+15+25+23+25. The exam lasts for 2h and
45min. Do not forget to add explanations/comments next to your algebraic/numerical solutions, especially where
requested. You are allowed to use a two-sided A4 hand-written cheat sheet that needs to be handed-in together
with your exam. It is highly recommended that you write your resolution using a pen and not a pencil.

Exercise 1 [12 points = 2 + 5 + 5]

Consider the following linear program:

max 5x1 + x2

s.t. 3x1 + 2x2 ≤ 9

x1 ≥ 0

x2 ≥ 1.

(a) [2 points] Rewrite the constraints in the form Ax ≥ b. Is A the totally unimodular matrix? What can we
deduce about the integrality of the optimal solution of the problem?

We can rewrite the constraint set as Ax ≥ b by taking A =

−3 −2
1 0
0 1

 and b = (−9, 0, 1)⊤. The matrix A

is not totally unimodular because it has at least one entry, i.e., A11, that is not in the set {−1, 0, 1}. Thus,
even if the vector b = (−9, 0, 1) is integer, there is no guarantee a priori that the solution will be integer.

(b) [5 points] Represent the problem graphically, including the lines defining the constraints, the resulting
feasible region, and the isolines of the objective function.

See plot below, with the feasible region in blue and the isolines of the objective function in black.

(c) [5 points] Using the graphical representation in (a), solve the problem by reporting the optimal solution
and the optimal value achieved.
The optimal solution is x1 = 7/3, x2 = 1 (displayed in red in the plot above) with a corresponding optimal
value equal to v(P ) = 38/3.



Exercise 2 [15 points = 5 + 5 + 5]

Consider the following linear program:

max x1 + x2 + 3x3

s.t. 3x1 + 2x2 + x4 ≥ 5

6x1 + x4 ≤ 10

2x1 + x2 + 5x3 = 9

x1 ≥ 0

x2 ≤ 0

x3 ∈ R
x4 ≥ 0.

(a) [5 points] Write the dual problem of the above linear program.

Using the linear duality theory, one can derive that the dual problem is

min 5λ1 + 10λ2 + 9λ3

s.t. 3λ1 + 6λ2 + 2λ3 ≥ 1

2λ1 + λ3 ≤ 1

5λ3 = 3

λ1 + λ2 ≥ 0

λ1 ≤ 0

λ2 ≥ 0

λ3 ∈ R.

(b) [5 points] Consider the point x ∈ R4 defined by x1 = x2 = 0, x3 = 1.8, x4 = 10. Is x a feasible point for the
primal problem? Motivate your answer. Based on this, what can you say about the optimal solution value
of the dual problem?

The given point is feasible because all constraints of the primal problem are satisfied. Since the primal
problem is feasible, due to the Weak Duality Theorem, the dual problem can not be unbounded.

(c) [5 points] Is the point x ∈ R4 given in (b), that is x1 = x2 = 0, x3 = 1.8, x4 = 10, also an optimal solution
for the primal problem? Motivate your answer. Based on this, what can you conclude about the optimal
solution of the dual problem?

One of the results seen at lecture for linear duality states that, since strong duality holds, complementary
slackness must be satisfied. The given point can easily be shown to be feasible. We thus write the
complementary slackness conditions

λ1(3x1 + 2x2 + x4 − 5) = 0 = 0
λ2(6x1 + x4 − 10) = 0
λ3(2x1 + x2 + 5x3 − 9) = 0
(3λ1 + 6λ2 + 2λ3)x1 = 0
(2λ1 + λ3)x2 = 0
(5λ3 − 3)x3 = 0
(λ1 + λ2)x4 = 0

Plugging in the values x1 = x2 = 0, x3 = 1.8, x4 = 10 and solving the resulting system reduces to 5λ1 = 0
λ3 = 3/5
λ1 = −λ2

and has an unique solution λ1 = λ2 = 0, λ3 = 0.6. This solution is feasible for the dual problem and
therefore optimal. Since the system has a solution, the point x1 = x2 = 0, x3 = 1.8, x4 = 10 is the optimal
solution of the primal.



Exercise 3 [25 points = 5 + 5 + 5 + 5 + 5]

Consider the following optimization problem:

min x4
1 + x2

2 + x4
3

s.t. x2
1 + 2x2

2 ≤ 10

5− x1 − x4
3 ≥ 0

x1 + x2 = 2

x1, x2, x3 ∈ R.

(a) [5 points] Is the optimization problem convex? Motivate your answer.

The given minimization problem is convex because, after writing it in the standard form, its objective
function and all its constraints are.

– The objective function is convex on its entire domain, being the sum of three convex functions.
Alternatively, the gradient of the objective function f(x) is ∇f(x) = (4x3

1, 2x2, 4x
3
3) and the Hessian is

∇2f(x) =

12x2
1 0 0

0 2 0
0 0 12x2

3


which is a positive semidefinite matrix, having eigenvalues 12x2

1, 2 and 12x2
3, all nonnegative for all

x ∈ R3. This can be shown also by calculating the principal minors: the determinants of all the
principal submatrices are bigger than or equal to 0 for every x ∈ R3.

– The first nonlinear inequality constraint, once rewritten in standard form g1(x) = x2
1 + 2x2

2 − 10 ≤ 0,
is convex on its whole domain, being the sum of two convex functions. Alternatively, one can calculate
the gradient as ∇g1(x) = (2x1, 4x2, 0) and the Hessian as

∇2g1(x) =

2 0 0
0 4 0
0 0 0


and conclude that the latter is a positive semidefinite matrix. Indeed, ∇2g1(x) has eigenvalues 4, 2,
and 0, all nonnegative, or, equivalently, the determinants of all the principal submatrices are bigger
than or equal to 0.

– The second nonlinear inequality constraint, once rewritten in standard form g2(x) = x1 + x4
3 − 5 ≤ 0,

is convex on its whole domain, being the sum of two convex functions. Alternatively, one can calculate
the gradient as ∇g2(x) = (1, 0, 4x3

3) and the Hessian as

∇2g2(x) =

0 0 0
0 0 0
0 0 12x2

3


and conclude that the latter is a positive semidefinite matrix. Indeed, ∇2g2(x) has eigenvalues
12x2

3 ≥ 0, 0, and 0, all nonnegative, or, equivalently, the determinants of all the principal submatrices
are bigger than or equal to 0.

– The equality constraint x1 + x2 = 2 is linear, hence convex.

(b) [5 points] After having rewritten the problem in standard form, write the corresponding Lagrangian function.

The problem in standard form is

min x4
1 + x2

2 + x4
3

s.t. x2
1 + 2x2

2 − 10 ≤ 0

x1 + x4
3 − 5 ≤ 0

x1 + x2 − 2 = 0

x1, x2, x3 ∈ R.

Introducing two dual variables λ1, λ2 ≥ 0 for the inequality constraint and one dual variable µ ∈ R for the
equality constraint, the Lagrangian function is

L(x1, x2, x3, λ1, λ2, µ) = x4
1 + x2

2 + x4
3 + λ1(x

2
1 + 2x2

2 − 10) + λ2(x1 + x4
3 − 5) + µ(x1 + x2 − 2).



(c) [5 points] Write the Karush–Kuhn–Tucker (KKT) conditions for this problem.

The KKT conditions are

4x3
1 + 2λ1x1 + λ2 + µ = 0 (stationarity)

2x2 + 4λ1x2 + µ = 0 (stationarity)
4x3

3 + 4λ2x
3
3 = 0 (stationarity)

x2
1 + 2x2

2 − 10 ≤ 0 (primal feasibility)
x1 + x4

3 − 5 ≤ 0 (primal feasibility)
x1 + x2 − 2 = 0 (primal feasibility)
λ1 ≥ 0 (dual feasibility)
λ2 ≥ 0 (dual feasibility)
λ1(x

2
1 + 2x2

2 − 10) = 0 (complementary slackness)
λ2(x1 + x4

3 − 5) = 0 (complementary slackness)

(d) [5 points] If you were to solve the KKT conditions, will you obtain the optimal solution of the problem?
Motivate your answer. Note that you are not asked to solve the system of KKT conditions.

The problem is convex therefore if Slater’s condition holds, the KKT conditions are necessary and sufficient
optimality conditions, i.e., solving the KKT conditions will give the optimal solution of the problem. To
check if Slater’s condition holds, we need to find a feasible solution such that all the affine constraints of the
problem are satisfied and all the nonaffine constraints are strictly satisfied. The solution x1 = 2, x2 = x3 = 0
strictly satisfies the first two constraints (nonaffine constraints) and satisfies the affine constraint (last
constraint). The existence of such a solution implies that Slater’s condition holds. Therefore, solving the
KKT conditions will allow us to solve the problem to optimality.

(e) [5 points] Consider the first two constraints, namely x2
1 + 2x2

2 ≤ 10 and x1 + x4
3 ≤ 5. Can each of them

(separately) be represented as a Second-Order Conic constraint ? If yes, show how. If not, motivate your
answer.

Constraint x2
1 + 2x2

2 ≤ 10 can be rewritten as follows:

x2
1 + (

√
2x2)

2 ≤ 10 −→
√

x2
1 + (

√
2x2)2 ≤

√
10 (1)

which can be represented in conic form as x1√
2x2√
10

 ∈ L2 ⇐⇒ Ax+ b ∈ L2.

where

A =

1 0

0
√
2

0 0

 , b =

 0
0

−
√
10

 .

Constraint x1 + x4
3 ≤ 5 can be reformulated as follows:

x1 + (x2
3)

2 ≤ 5 −→ x1 + s2 ≤ 5

where s and t are additional variables. After adding the constraint s ≥ x2
3 (another SOC constraint) and

t = 5− x1 (a simple linear transformation) we can write our constraint as follows:

s2 ≤ t

that is equivalent to  2s
t− 1
t+ 1

 ∈ L2 ⇐⇒ A(s, t)⊤ + b ∈ L2.

where

A =

2 0
0 1
0 1

 , b =

 0
−1
1

 .



Exercise 4 [23 points = 10 + 7 + 6]

Consider the following optimization problem:

min max{3x1, x1 + 6x2}
s.t. 2x1x2 + x1 ≥ 1

x1 − 3x2 ≥ −2

x1 ≤ 10

x1 ≥ 0

x2 ∈ {0, 1}.

(a) [10 points] Reformulate the problem as an (integer) linear program, modifying both the objective and the
nonlinear constraint.

The objective function can be replaced by a new continuous real variable t ∈ R, provided that we add two
new constraints 3x1 ≤ t and x1 + 6x2 ≤ t to the problem.

Focusing on the first constraint, the product x1x2 therein can be “linearized” using the fact that x2 ∈ {0, 1}
and 0 ≤ x1 ≤ 10. More specifically, x1x2 can be replaced by a new continuous real variable y ∈ R that
meets the following additional constraints

y ≤ 10x2,

y ≥ 0,

y ≤ x1,

y ≥ x1 − 10(1− x2).

Then, we can rewrite the first inequality as 2y + x1 ≥ 1. The resulting full ILP then reads as

min t

s.t. 3x1 ≤ t

x1 + 6x2 ≤ t

2y + x1 ≥ 1

x1 − 3x2 ≥ −2

0 ≤ x1 ≤ 10

x2 ∈ {0, 1},
y ≤ 10x2,

y ≥ 0,

y ≤ x1,

y ≥ x1 − 10(1− x2).

Assume now that the coefficients on the left-hand side of the second constraint, i.e., x1 − 3x2 ≥ −2, are now
uncertain, and thus we replace it with the following chance constraint

P(z1x1 + z2x2 ≥ −2) ≤ 1− ε,

where ε ∈ (0, 1) and z = (z1, z2) is the vector of uncertain coefficients.

(b) [7 points] Assuming the vector of uncertain coefficients z = (z1, z2) follows a multivariate Gaussian

distribution (µ,Σ) with mean µ = (1,−3) and covariance matrix Σ =

(
2 1/2
1/2 1

)
, rewrite the chance

constraint above in an equivalent deterministic form.

The chance constraint can be rewritten using the fact that P(A) = 1− P(Ac) as

P(z1x1 + z2x2 < −2) ≥ ε.

Using the fact that is a Gaussian distribution, this is equivalent to the constraint

µ⊤x ≤ h+Φ−1(ε)
√
x⊤Σx



with h = −2, µ = (1,−3), Σ =

(
2 1/2

1/2 1

)
, which rewrites as

x1 − 3x2 ≤ −2 + Φ−1(ε)
√
2x2

1 + x1x2 + x2
2,

where Φ−1(·) is the inverse CDF or quantile function of a standard normal distribution.

(c) [6 points] Under the same assumptions as in (b), is the chance constraint introduced above convex for all
values of ε? Motivate your answer in either case.

This constraint is convex if and only if ε ≥ 1
2 . Indeed, the function g(x) := −h+µTx−Φ−1(ε)

√
xTΣx that

appears in the constraint g(x) ≤ 0 is convex because it is the sum of two convex functions, the first one

being the affine function −h+µTx, the second one being Φ−1(ε)
√
xTΣx, which inherits the convexity from√

xTΣx (proved in (a)), as long as Φ−1(ε) ≤ 0. Since the probability mass is distributed symmetrically
with respect to the origin for a standard normal distribution, the quantile Φ−1(ε) is less than or equal to 0
only when ε ≤ 1/2.

Exercise 5 [25 points = 10 + 10 + 5]

Taif is a company that manufactures cars in two factories and then ships them to three regions in Europe. The
two factories, labeled as A and B, can supply at most 450 and 600 cars, respectively. The customer demands in
regions 1, 2, and 3 are equal to 450, 200, and 300 cars, respectively. To ship a car from each factory to each
region Taif must pay a shipping cost (unit shipping costs). This cost is however subject to uncertainty, depending
on different unpredictable factors (weather, traffic, truck availability, etc.).

Taif has some data available regarding the unit shipping costs of previous shipping. After analyzing such data,
Taif was able to derive a minimum and a maximum unit shipping cost from each factory and region pair, as
reported in the following table (values in e/car).

Region 1 Region 2 Region 3
min max min max min max

Factory A 131 150 218 230 266 270
Factory B 250 280 116 120 263 270

Additionally, Taif observed that the sum of all the 6 unit shipping costs (from every possible factory to every
possible region) never exceeds a total amount Cmax = 1500 e/car.

Taif wants to find the lowest-cost shipping plan for meeting the demands of the four regions without exceeding
the capacities of the factories in the worst-case, taking into consideration the information on the minimum and
maximum observed unit shipping cost for each connection and on the sum of all the unit shipping costs C.

(a) [10 points] Formulate a robust mathematical optimization model that Taif can use to solve its shipping cost
minimization problem. Introduce and define the decision variables, describe the constraints, distinguishing
the deterministic ones and those affected by uncertainty, and explicitly describe the uncertainty set in
which the uncertain parameters vary. What type of uncertainty set is it?

Let us first introduce the following sets and parameters

– F is the set of factories: F = {A,B}

– R is the set of destinations/regions: R = {1, 2, 3}

– si is the availability/supply of factory i ∈ F

– dj is the demand of destination/region j ∈ R

– zij is the unit shipping cost from origin i ∈ F to destination j ∈ R. These parameters are subject to
uncertainty and belong to the uncertainty set Z ⊆ R2×3

The uncertainty set Z is a polyhedral uncertainty set defined by

Z =
{
z ∈ R2×3 : zij ∈ [cij , cij ] ∀i ∈ F, j ∈ R,

∑
i∈F

∑
j∈R

zij ≤ Cmax

}
,

where cij and cij represent the values of the minimum and maximum shipping cost from factory i to region
j, for each i ∈ F and j ∈ R, respectively and defined according to the provided table above (e.g., c11 = 131,
cij = 150).



If you noticed that even in the worst case (that is when the shipping costs all take the highest values), the
sum

∑
i∈F

∑
j∈R zij = 1320 < 1500 = Cmax is redundant and can thus be removed from the uncertainty

set, which can then be recognized as a simpler box uncertainty set.

Denote by xij ∈ Z+ the decision variables describing the number of cars to ship from factory i ∈ F to
region j ∈ R. The objective function of the problem is to minimize the worst-possibly shipping costs and
can thus be written as

minmax
z∈Z

∑
i∈F

∑
j∈R

zijxij

The following two constraints describe respectively the maximum car production in each factory and the
customer demand in each region: ∑

j∈R

xij ≤ si ∀i ∈ F,

∑
i∈F

xij = dj ∀j ∈ R.

The uncertainty can be moved from the objective function into a (new) constraint by adding an auxiliary
variable t ∈ R. The resulting robust optimization problem then is:

min t

s.t. t ≥
∑
i∈F

∑
j∈R

zijxij ∀z ∈ Z

∑
j∈R

xij ≤ si ∀i ∈ F

∑
i∈F

xij = dj ∀j ∈ R

xij ∈ Z+ ∀i ∈ F, j ∈ R.

(b) [10 points] Identify the adversarial problem of your robust model, define its dual, and derive the tractable
robust counterpart of the problem.
Hint: First use one of the standard tricks to move the uncertainty from the objective to a constraint.

The adversarial problem is:

max
∑
i∈F

∑
j∈R

zijxij

s.t.
∑
i∈F

∑
j∈R

zij ≤ Cmax [τ ]

zij ≤ cij ∀i ∈ F,∀j ∈ R [uij ]

zij ≥ cij ∀i ∈ F,∀j ∈ R [ℓij ]

Using standard dual theory or the formula for polyhedral uncertainty, we can show that the dual of the
adversarial problem is:

min τCmax +
∑
i∈F

∑
j∈R

(
uijcij + ℓijcij

)
s.t. τ + uij + ℓij = xij ∀i ∈ R, j ∈ F [zij ]

τ ≥ 0 ∀i ∈ F,∀j ∈ R

uij ≥ 0 ∀i ∈ F,∀j ∈ R

ℓij ≤ 0 ∀i ∈ F,∀j ∈ R.



The tractable reformulation of the robust problem then is

min t

s.t. t ≥ τCmax +
∑
i∈F

∑
j∈R

(
uijcij + ℓijcij

)
τ + uij + ℓij = xij ∀i ∈ R, j ∈ F∑
j∈R

xij ≤ si ∀i ∈ F

∑
i∈F

xij = dj ∀j ∈ R

xij ∈ Z+ ∀i ∈ F, j ∈ R

τ ≥ 0 ∀i ∈ F,∀j ∈ R

uij ≥ 0 ∀i ∈ F,∀j ∈ R

ℓij ≤ 0 ∀i ∈ F,∀j ∈ R.

If you correctly derived a simpler box uncertainty set in part (a), the solution you should have obtained is
the one without the terms τ and τCmax.

(c) [5 points] Assume that the maximum value of the total sum of the 6 unit shipping costs is decreased
to Cmax = 1400 e/car. What is the relationship between the optimal solution cost of the new robust
problem (obtained setting Cmax = 1400) and the solution of the previously formulated robust problem
(Cmax = 1500)?

We can conclude that the following inequality holds for the optimal value of the primal problem in the two
cases:

v(P )Cmax=1400 ≤ v(P )Cmax=1500.

This inequality is a consequence of the fact that the uncertainty set is possibly reduced when Cmax = 1400
compared to the case Cmax = 1500.

If you correctly spotted the redundancy and derived a simpler box uncertainty set in part (a), you could
have further concluded that the optimal values are actually identical since the two uncertainty sets coincide.


