

Faculty of Exact Sciences

Exam: Mathematical Optimization

Code: XM_0051

Examiner: Joaquim Gromicho Co-reader: Alessandro Zocca

Date: 5 February 2020

Time: 18:30

Duration: 2 hours and 45 minutes

Calculator allowed: Yes

Graphical calculator

allowed: No

Number of questions: 14 in 5 question groups.

Type of questions: Open

Answer in: English (note that Dutch will not be corrected!!!)

Remarks:

- A solution without explanation is considered wrong.
- The credits that each individual question is worth are displayed next to it.
- · Remember to answer in English!

Credit score: 10.0 = 1.0 + (0.5+1.0+0.5+1.0) + 1.0 + (0.5+0.5+0.5+0.5+0.5+1.0+0.5) + 1.0

Grades: before Wednesday February 19, 2020.

Inspection: Upon request.

Number of pages: 3 including cover page

Good luck!

1. (ILO modeling) 1 credit

Suppose that we want to formulate an optimization problem on the decision variables $x \in \mathbb{R}^n$ that involves two constraints of the form $d^Tx \leq f$ and $g^Tx \leq h$ for two vectors $d, g \in \mathbb{R}^n$ and two real numbers f, h.

The underlying model at hand has the following property: if the first constraint is satisfied, then the second is not needed. In other words, the constraint $g^Tx \le h$ must only hold if $d^Tx \le f$ is violated. Explain how you would formally model this.

2. (MO & optimality)

3 credits

Consider the following mathematical optimization problem expressed in two variables:

$$\begin{array}{ll}
\text{max} & xy \\
\text{st:} & x + y^2 \le 1 \\
& x, y \ge 0
\end{array}$$

- 2.1 (0.5 credits) Is it a convex optimization problem?
- 2.2 (1 credit) Express the Karush-Kuhn-Tucker conditions.
- 2.3 (0.5 credits) Show that that $x=y=\lambda_1=\lambda_2=\lambda_3=0$ satisfies the KKT conditions. Is this an optimal solution for the problem?
- 2.4 (1 credit) Use the KKT conditions to solve the problem.

3. (CQr)

1 credit

Convert the constraint $x + y^2 \le 1$ into a conic quadratic inequality $\| \boldsymbol{D}\boldsymbol{u} + \boldsymbol{d} \|_2 \le p\boldsymbol{u} + q$ with $\boldsymbol{u} = (x,y)$ for the appropriate matrix \boldsymbol{D} , vectors \boldsymbol{d} and \boldsymbol{p} and scalar q. You may use as many second order conic inequalities as you need.

Hint: remember that $a = \frac{(a+1)^2}{4} - \frac{(a-1)^2}{4}$.

Consider the capacitated location model described below. This model is defined as follows:

$$\min \quad \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} + \sum_{j \in J} h_j y_j$$

$$\text{st:} \quad \sum_{j \in J} x_{ij} = 1 \qquad \forall i \in I \quad (4.a)$$

$$\sum_{i \in I} d_i x_{ij} \le u_j y_j \qquad \forall j \in J \quad (4.b)$$

$$0 \le x_{ij} \le 1 \qquad \forall i \in I \quad \forall j \in J$$

$$y_j \in \{0,1\} \qquad \forall j \in J$$

Given a set of customers *I* and a set of locations *J*, one interpretation for this model is the following:

- x_{ij} is the proportion of demand d_i of customer i served at facility j with cost of service c_{ij}
- facility j costs h_j to be installed and open for service offering capacity u_j
- each customer must satisfy the full demand (4. a)
- open facilities offer capacity (4. b)

The objective of the problem is to decide which facilities to open and how to satisfy the customer's demand at minimum cost. Assume that all values c_{ij} , h_j , d_i and u_j are positive and integer and answer the following questions:

4.1 (0.5 credits) Is the constrain matrix of the whole model Total Unimodular in general?

 $\boxed{4.2}$ (0.5 credits) Show that the part of the constraint matrix that defines only constraints (4.a) is Totally Unimodular.

 $\boxed{4.3}$ (0.5 credits) Describe the problem that you obtain when you **ignore** (4.b) and explain how you can solve it analytically.

4.4 (0.5 credits) Describe the problem - and its solution - that you obtain when you **ignore** (4.a).

4.5 (0.5 credits) Describe the problem that you obtain when you relax (4.a) and explain how you would solve it. Note that relaxing (in the Lagrangian way) modifies the costs.

4.6 (1.0 credit) Suppose that you could freely choose which Lagrange Dual to solve: either relaxing constraints (4.a) or relaxing constraints (4.b). Which of these two would you prefer and why?

4.7 (0.5 credits) Remember the uncapacitated facility location model, for which you learned a weak and a strong model. The model given here for the capacitated case is like the weak model of the uncapacitated case. Suggest a way to strengthen it.

5. (*RO*) 1 credit

Starting from the optimization problem in part 4, suppose that the demand is now uncertain but known to be inside a ball centered at the nominal vector $\mathbf{d} = [d_1 \quad \cdots \quad d_i \quad \cdots \quad d_{\#I}]$. Furthermore, suppose that the radius of this uncertainty ball depends on the facility, i.e., is equal to $\delta_j > 0$ for each $j \in J$. Explain how to model the robust version of the problem by giving the robust counterpart of the given uncertainty set.