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Faculty of Exact Sciences  
 
Exam:    Mathematical Optimization  
Code:    XM_0051 
 
Examiner:  Joaquim Gromicho  
Co-reader:  Alessandro Zocca 
 
Date:   5 February 2020 
 
Time:   18:30 
 
Duration:  2 hours and 45 minutes 
 
Calculator allowed: Yes 
 
Graphical calculator 
allowed:  No 
 
Number of questions: 14 in 5 question groups. 
 
Type of questions: Open 
 
Answer in:  English (note that Dutch will not be corrected!!!) 
 
 

 
 
Credit score: 10.0 = 1.0 + (0.5+1.0+0.5+1.0) + 1.0 + (0.5+0.5+0.5+0.5+0.5+1.0+0.5) + 1.0 
 
Grades:   before Wednesday February 19, 2020. 
 
Inspection:   Upon request. 
  
Number of pages: 6 including cover page 
 
 

Good luck! 
 

  

Remarks:  
• A solution without explanation is considered wrong. 
• The credits that each individual question is worth are displayed next to it.  
• Despite the fact that multiple questions concern the same optimization problem, the questions are posed in 

such a way that failure to answer one question does not affect your ability to solve another. You may use the 
statements made presented in one (unanswered) questions to answer any of the remaining questions.   
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1. (ILO modeling)  1 credit  
 

Suppose that we want to formulate an optimization problem on the decision variables 𝒙 ∈ 𝑅$ that involves 
two constraints of the form 𝒅𝑻𝒙 ≤ 𝑓 and 𝒈*𝒙 ≤ ℎ for two vectors 𝒅, 𝒈 ∈ 𝑅$ and two real numbers 𝑓, ℎ.  
  
The underlying model at hand has the following property: if the first constraint is satisfied, then the second 
is not needed. In other words, the constraint 𝒈*𝒙 ≤ ℎ must only hold if 𝒅𝑻𝒙 ≤ 𝑓 is violated. Explain how 
you would formally model this.  
 
0.5 Note that 𝑑*𝑥 > 𝑓	 ⇒ 𝑔*𝑥 ≤ ℎ is equivalent to 𝑑*𝑥 ≤ 	𝑓	 ∨ 	𝑔*𝑥 ≤ ℎ. Therefore, we need to model 
that either the first or the second constraint are satisfied.  
0.5 If we may find a sufficiently large 𝑀 such that adding it to the right-hand side makes the corresponding 
constraint redundant, then it is enough to add a binary variable 𝑦 ∈ {0,1} to ‘decide’ which constraint must 
hold, namely 
 

𝑑*𝑥 ≤	 𝑓 + 𝑀𝑦
𝑔*𝑥 ≤	 ℎ + 𝑀(1 − 𝑦)

 

 
2. (MO & optimality)  3 credits 
 

Consider the following mathematical optimization problem expressed in two variables: 
 

max 𝑥𝑦																
st: 𝑥 + 𝑦D ≤ 1
	 𝑥, 𝑦 ≥ 0						

 

 
2.1 (0.5 credits) Is it a convex optimization problem? 
 
0.25 The feasible region is clearly defined by ‘convex inequalities’, since affine functions are convex and the 
sum of convex functions is convex. The objective function 𝑓(𝑥, 𝑦) has as gradient ∇𝑓 = [𝑦 𝑥] and as 

Hessian ∇D𝑓 = J0 1
1 0K. 

0.25 This matrix is clearly indefinite (eigenvalues +1,−1, eigenvectors (−1,1), (1,1), leading principal 
minors 0 and −1, etc), making the objective function neither convex nor concave. Thus, it is not a convex 
optimization problem.  
 
2.2 (1 credit) Express the Karush-Kuhn-Tucker conditions. 
 
The KKT conditions are always necessary for optimality, and we can express them regardless of the 
convexity of the problem.  
0.5 In order to have our problem in the usual minimization form we consider this equivalent formulation: 
 

min −𝑥𝑦																
st: 𝑥 + 𝑦D − 1 ≤ 0
	 −𝑥,−𝑦 ≤ 0						

 

Setting 
𝑓(𝑥, 𝑦) = −𝑥𝑦 

𝑔N(𝑥, 𝑦) = 𝑥 + 𝑦D − 1 
𝑔D(𝑥, 𝑦) = −𝑥 
𝑔O(𝑥, 𝑦) = −𝑦 
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we obtain  
∇𝑓(𝑥, 𝑦) = [−𝑦 −𝑥] 

∇𝑔(𝑥, 𝑦) = P
1 2𝑦
−1 0
0 −1

R 

 
0.5 Introducing the non-negative dual variables for 𝜆 = (𝜆N, 𝜆D, 𝜆O), the KKT conditions then are: 
 

−𝑦 + 𝜆N − 𝜆D = 0 
−𝑥 + 2𝑦𝜆N − 𝜆O = 0 
𝜆N(𝑥 + 𝑦D − 1) = 0 

𝜆D(−𝑥) = 0 
𝜆O(−𝑦) = 0	 
𝑥 + 𝑦D − 1 ≤ 0 

−𝑥 ≤ 0 
−𝑦 ≤ 0 
𝝀 ≥ 𝟎 

Alternative solution Leaving the problem as a maximization, all the constraints should be inequalities of the 
form ≥ 0 
 

𝑓(𝑥, 𝑦) = 𝑥𝑦 
𝑔N(𝑥, 𝑦) = −𝑥 − 𝑦D + 1 

𝑔D(𝑥, 𝑦) = 𝑥 
𝑔O(𝑥, 𝑦) = 𝑦 

 
We obtain therefore:  

∇𝑓(𝑥, 𝑦) = [𝑦 𝑥] 

∇𝑔(𝑥, 𝑦) = P
−1 −2𝑦
1 0
0 1

R 

 
Introducing the non-positive dual variables for 𝜆 = (𝜆N, 𝜆D, 𝜆O), the KKT conditions then are: 
 

𝑦 − 𝜆N + 𝜆D = 0 
𝑥 − 2𝑦𝜆N + 𝜆O = 0 
𝜆N(−𝑥 − 𝑦D +) = 0 

𝜆D(𝑥) = 0 
𝜆O(𝑦) = 0	 

−𝑥 − 𝑦D + 1 ≥ 0 
𝑥 ≥ 0 
𝑦 ≥ 0 
𝝀 ≤ 𝟎 

which coincides with the above ones. 
 
2.3 (0.5 credits) Show that that 𝑥 = 𝑦 = 𝜆N = 𝜆D = 𝜆O = 0 satisfies the KKT conditions. Is this an optimal 
solution for the problem?  
 
0.25 We can easily see that 𝑥 = 𝑦 = 𝜆N = 𝜆D = 𝜆O = 0 is a point satisfying the KKT conditions. 
0.25 This point is clearly not a maximum: for this point the objective function yields the value 0, while for 
instance (1,0) and (0,1) are both feasible and yield a strictly larger value, namely 1.  
[Half the grade, that is 0.25, can be obtained for this question without the KKT conditions only by showing 
that (0,0) cannot be optimal.]  
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2.4 (1 credit) Use the KKT conditions to solve the problem.  
 
0.4 (Case separation) Note that 𝜆N = 0 implies from the first two conditions that 𝑦 + 𝜆D = 𝑥 + 𝜆O = 0 
which is only possible if all are zero (due to the nonnegativity). That is the case of the previous question. 
Therefore, we must now consider the case 𝑥 + 𝑦D = 1 meaning that 𝑥 = 1 − 𝑦D and 𝑥 and 𝑦 no longer can 
be both 0. Let us consider the two resulting cases: 
 
If 𝑥 > 0, then 𝜆D = 0 (complementary slackness, 4th condition) and 𝜆N = 𝑦 (1st condition) leading to 
2𝑦D = 𝑥 + 𝜆O (second condition) which is clearly ≥ 𝑥 > 0. Therefore 𝑦 > 0	and 𝑦O = 0 (complementary 

slackness, 5th condition) leading to 𝑦 = WX
D
. Since 𝜆N = 𝑦 > 0 the 3rd condition gives 𝑥 + X

D
= 1, yielding 

𝑥 = D
O
 and 𝑦 = √O

O
. 

 
If 𝑥 = 0,	then since we are also assuming 𝜆N > 0 we must have 𝑦D = 1 (complementary slackness, 3rd 
condition) meaning that 𝑦 > 0 and 𝜆O = 0 (complementary slackness, 5th condition) which reduces the 
2nd condition to 2𝑦𝜆N = 0 leading to 𝜆N = 0 and, hence, back to the case of the previous question.  
 

0.4 (Correct solutions) To conclude, the only two solutions of the KKT system are: (0,0) and ZD
O
, √O
O
[. 

0.2 (Identification of the maximum) In view of the previous question, it immediately follows that the 

second must be optimal, with value D√O
\

.  
 
3. (CQr)  1 credit 
 

Convert the constraint 𝑥 + 𝑦D ≤ 1	into a conic quadratic inequality ‖𝑫𝒖 + 𝒅‖D ≤ 𝒑𝒖 + 𝑞 with 𝒖 = (𝑥, 𝑦) 
for the appropriate matrix 𝑫, vectors 𝒅 and 𝒑 and scalar 𝑞. You may use as many second order conic 
inequalities as you need.  

Hint: remember that 𝑎 = (cdN)e

f
− (cgN)e

f
. 

0.5 (correct derivation) + 0.5 (final matrix form) A possible CQr reformulation can be obtained as follows: 

𝑥 + 𝑦D ≤ 1	 

𝑦D ≤ 1 − 𝑥 

𝑦D ≤
(1 − 𝑥 + 1)D

4 −
(1 − 𝑥 − 1)D

4  

𝑦D +
𝑥D

4 ≤
(2 − 𝑥)D

4  

(2𝑦)D + 𝑥D ≤ (2 − 𝑥)D 

i𝑥D + (2𝑦)D ≤ 2 − 𝑥 

jJ1 0
0 2K J

𝑥
𝑦K + [0 0]j

D
≤ [−1 0] J

𝑥
𝑦K + 2 

Note that there are other possible valid solutions for matrix 𝑫, vectors 𝒅 and 𝒑 and scalar 𝑞. 
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4. Lagrange Duality for MILO 4 credits 
 

Consider the capacitated location model described below. This model is defined as follows: 
 

min kk𝑐mn𝑥mn
n∈om∈p

+kℎn𝑦n
n∈o

st: k𝑥mn = 1
n∈o

∀𝑖 ∈ 𝐼 (4. 𝑎)

k𝑑m𝑥mn ≤ 𝑢n𝑦n
m∈p

∀𝑗 ∈ 𝐽 (4. 𝑏)

0 ≤ 𝑥mn ≤ 1 ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽
𝑦n ∈ {0,1} ∀𝑗 ∈ 𝐽

 

 
Given a set of customers 𝐼 and a set of locations 𝐽, one interpretation for this model is the following: 

• 𝑥mn	is the proportion of demand 𝑑m  of customer 𝑖 served at facility 𝑗 with cost of service 𝑐mn  
• facility 𝑗 costs ℎn  to be installed and open for service offering capacity 𝑢n  
• each customer must satisfy the full demand (4. 𝑎) 
• open facilities offer capacity (4. 𝑏) 

The objective of the problem is to decide which facilities to open and how to satisfy the customer’s 
demand at minimum cost. Assume that all values 𝑐mn, ℎn, 𝑑m  and 𝑢n  are positive and integer and answer the 
following questions: 
 
4.1 (0.5 credits) Is the constrain matrix of the whole model Total Unimodular in general? 
 
0.5 Clearly not, since 𝑑m  and 𝑢n  can possibly (and most likely) be bigger than 1. 
 
4.2 (0.5 credits) Show that the part of the constraint matrix that defines only constraints (4. 𝑎) is Totally 
Unimodular.  

0.5  Any submatrix consists only of 0′s and 1’s. Each column has at most one 1. If a row exists with only 0 
then the determinant is 0. If two columns are equal, then the determinant is also 0. In the remainder case 
the columns can be rearranged into an identity matrix, meaning that the determinant was either 1 or −1.  
 
4.3 (0.5 credits) Describe the problem that you obtain when you ignore (4. 𝑏) and explain how you can 
solve it analytically.  
 
0.5 The problem can be separated in one problem for every 𝑖. For each of these subproblems indexed by 𝑖 
we select the 𝑗	with minimum 𝑐mn. 
 
4.4 (0.5 credits) Describe the problem - and its solution - that you obtain when you ignore (4. 𝑎). 
 
0.5 Ignoring (4. 𝑎) makes the solution 𝑥mn = 0 = 𝑦n  feasible, which is optimal. 
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4.5 (0.5 credits) Describe the problem that you obtain when you relax (4. 𝑎) and explain how you would 
solve it. Note that relaxing (in the Lagrangian way) modifies the costs.  
 
0.5  The solution 𝑥mn = 0 = 𝑦n  is feasible but may no longer be optimal since the coefficients of 𝑥mn  in the 
objective function of the relaxation may become negative. The problem separates in #𝐽 independent 
problems each with the structure, where 𝑐z{| is modified by the relaxation: 

min k𝑐z{|𝑥mn
m∈p

+ ℎn𝑦n

st: k𝑑m𝑥mn ≤ 𝑢n𝑦n
m∈p
0 ≤ 𝑥mn ≤ 1 ∀𝑖 ∈ 𝐼
𝑦n ∈ {0,1}

 

 
If all 𝑐z{| are positive, the solution is 𝑥mn = 0 = 𝑦n  otherwise we compute the solution with 𝑦n = 1 and take 
it if its value is negative. The solution for 𝑦n = 1 can be found by considering only the 𝑖 for which 𝑐z{| is 
negative and noticing that we have in fact a fractional knapsack. This means that the problem can be 
solved easily [it is fine if the student does not comment on this].  
 
4.6 (1.0 credits) Suppose that you could freely choose which Lagrange Dual to solve: either relaxing 
constraints (4. 𝑎) or relaxing constraints (4. 𝑏). Which of these two would you prefer and why? 
 
0.2 Relaxing constraints (4. 𝑏) leads to a problem that is naturally integer (as shown in 4.2). 0.3 This means 
that the corresponding dual has the same value as the linear relaxation of the original problem, which is 
the weakest value a Lagrange dual may yield. 0.5 Relaxing (4. 𝑎) is therefore preferable, since the 
corresponding dual may have a value closer to the optimum of the problem.  
 
4.7 (0.5 credits) Remember the uncapacitated facility location model, for which you learned a weak and a 
strong model. The model given here for the capacitated case is like the weak model of the uncapacitated 
case. Suggest a way to strengthen it.  
 
0.5 Adding 𝑥mn ≤ 𝑦n  for every 𝑖 and 𝑗. 
 

5. (RO)             1 credit 
 

Suppose that the demand is now uncertain but known to be inside a ball centered at the nominal vector 
𝒅 = [𝑑N ⋯ 𝑑m ⋯ 𝑑#p]. Furthermore, suppose that the radius of this uncertainty ball depends on the 
facility, i.e., is equal to 𝛿n > 0 for each 𝑗 ∈ 𝐽. Explain how to model the robust version of the problem by 
giving the robust counterpart of the given uncertainty set.  

0.5 (correct dual problem) + 0.5 (correct final robust constraint)  The constraint (4. 𝑏) simply becomes 
∑ 𝑑m𝑥mn + 𝛿n�𝑥.n�D ≤ 𝑢n𝑦nm∈p  with 𝑥.n = [𝑥Nn ⋯ 𝑥mn ⋯ 𝑥#pn]. 


