Vrije Universiteit Amsterdam Mathematical Analysis, exercises for resit exam 8.30-11.30

July 6 2022 First examiner: Joost Hulshof

Second examiner: Bob Rink

Write the calculations and arguments that lead to your answers. *Motivate* your answers. You can use *earlier* statements, even if you failed to prove them. Calculators/communication/internet sources *NOT* allowed.

7 questions, 10 points total, your grade is min(T+1,10), T your total score.

Question 1. $(\frac{3}{2} \text{ points})$ Some basic theory.

- a) Give the definition of $x_n \to \bar{x}$ in \mathbb{R} .
- b) Give the limit definition of continuity of $f:[0,1]\to \mathbb{R}$ in $\xi\in[0,1]$.
- c) Give the definition for the uniform convergence of a sequence of functions $f_n:[0,1]\to\mathbb{R}$.
- d) Formulate a theorem for interchanging limits and integrals of a sequence of functions $f_n:[0,1]\to\mathbb{R}$.
- e) Give the ε, δ -condition for $f: \mathbb{R} \to \mathbb{R}$ to be differentiable in 0 with f'(0) = 0 if f(0) = 1.
- f) Give the minimal conditions on $f \in C([a,b])$ which imply the existence of $\xi \in (a,b)$ with

$$\frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Question 2. (1 point) A special case of the intermediate value theorem: let $f \in C([0,1])$ have the property that f(0) < 0 < f(1). Prove that there exists $\xi \in (0,1)$ with $f(\xi) = 0$.

Hint: let ξ be the supremum of $A = \{x \in [0,1], f(x) < 0\}$ and consider a sequence $x_n \in A$ with $x_n \to \xi$.

Question 3. (1 point) Let $a, b \in \mathbb{R}$ with a < b and let $f : (a, b) \to \mathbb{R}$ be differentiable.

Prove that f is Lipschitz continuous on (a,b) if and only if $f':(a,b)\to \mathbb{R}$ is bounded.

Question 4. (1 point) Exhibit a power series solution f(x) of the differential equation f''(x) = f(x) that satisfies f(0) = 1 and f'(0) = 0, and explain why the power series is convergent for all $x \in \mathbb{R}$.

Question 5. (2 points) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and suppose that $f(x_n) \to \infty$ for every unbounded monotone sequence x_n in \mathbb{R} . Prove that f has a global minimum.

Hint: formulate and use a theorem about monotone subsequences.

Question 6. Let $f: (-\frac{1}{2}, \frac{1}{2}) \to \mathbb{R}$ satisfy $f(x) = 1 + x^2 f(x)$.

- a) $(\frac{1}{2} \text{ point})$ Use the triangle inequality to prove that $|f(x)| \leq \frac{4}{3}$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$.
- b) (1 point) Use (a) to prove that f is differentiable in x = 0.

Question 7. Define the sequence of polynomials $f_n: \mathbb{R} \to \mathbb{R}$ by

$$f_0(x) = 1$$
, $f_n(x) = 1 + \int_0^x f_{n-1}(s)^2 ds$

for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$. Thus $f_n = \Phi(f_{n-1})$ with $\Phi(f)$ defined by

$$\Phi(f)(x) = 1 + \int_0^x f(s)^2 ds$$

for all $x \in \mathbb{R}$. In what follows we restrict the attention to $x \in [0, \frac{1}{4}]$.

- a) $(\frac{1}{2} \text{ point})$ Assume $1 \le f(x) \le 2$ for all $0 \le x \le \frac{1}{4}$. Show $1 \le \Phi(f)(x) \le 1 + 4x \le 2$ for all $0 \le x \le \frac{1}{4}$.
- b) $(\frac{1}{2} \text{ point})$ Let f and g be polynomials with $1 \le f(x) \le 1 + 4x$ and $1 \le g(x) \le 1 + 4x$ for all $0 \le x \le \frac{1}{4}$.

Show that

$$|\Phi(f)(x) - \Phi(g)(x)| \le \frac{3}{4} \max_{0 \le x \le \frac{1}{4}} |f(x) - g(x)|$$

for all $x \in [0, \frac{1}{4}]$.

Hint:
$$f(x)^2 - g(x)^2 = (f(x) + g(x))(f(x) - g(x)).$$

- c) $(\frac{1}{2} \text{ point})$ Use (a) and (b) to show that f_n is uniformly convergent on $[0, \frac{1}{4}]$.
- d) $(\frac{1}{2} \text{ point})$ Let $f: [0, \frac{1}{4}] \to \mathbb{R}$ be the limit function in (c). Explain why

$$f(x) = 1 + \int_0^x f(s)^2 ds$$

holds for all $x \in [0, \frac{1}{4}]$.