June 6 2022 First examiner: Joost Hulshof

Full examiner: Bob Rink

Write the calculations and arguments that lead to your answers. *Motivate* your answers. You can use *earlier* statements, even if you failed to prove them. Calculators/communication/internet sources *NOT* allowed.

Your grade will be $\min(10, 1 + T/2)$, T your total score, maximum T = 20, 6c is bonus. The first 3 questions are sufficient for grade 6. Questions 4,5,6 are on the other side. NB Each point is half a point of the grade, in de second exam each point is 1 point of the grade.

Question 1. (4 points) Some basic theory.

- a) $(\frac{1}{2} \text{ point})$ Give the ε -definition of $x_n \to \bar{x}$, both in \mathbb{R} and in a metric space X.
- b) $(\frac{1}{2} \text{ point})$ Give the limit definition of continuity of $f: A \to \mathbb{R}$ in $\xi \in A, A \subset \mathbb{R}$.
- c) $(\frac{1}{2} \text{ point})$ Which single condition on a sequence $x_n \in \mathbb{R}$ implies existence of a convergent subsequence?
- d) $(\frac{1}{2} \text{ point})$ For $f, g \in C([a, b])$ give the definition of the uniform distance d(f, g).
- e) $(\frac{1}{2} \text{ point})$ Give the ε -criterion for the integrability of a bounded function $f:[0,1] \to \mathbb{R}$.
- f) $(\frac{1}{2} \text{ point})$ Give the ε, δ -definition for the uniform continuity of a function $f: [0,1] \to \mathbb{R}$.
- g) $(\frac{1}{2} \text{ point})$ Give the ε, δ -condition for $f: \mathbb{R} \to \mathbb{R}$ to be differentiable in 0 with f'(0) = 0 if f(0) = 0.
- h) $(\frac{1}{2} \text{ point})$ Give the conditions on $f:[a,b]\to\mathbb{R}$ which imply the existence of $\xi\in(a,b)$ with

$$\frac{f(b) - f(a)}{b - a} = f'(\xi).$$

Grading/answers. NB The last 4 are the 4 items of 1 in the second exam.

- a) Definition 2.6: (2.8) with $L = \bar{x}$, as in (2.10), Definition 5.10 second statement, without the first quantor.
- b) Definition 4.1.
- c) Boundedness, see Theorem 3.20 (Bolzano-Weierstrass).
- d) (4.1) in Definition 4.8, norm given by Definition 4.5, repeated in first paragraph of Chapter 5.
- e) Definition 8.7.
- f) Theorem 7.2, first sentence.
- $g) \ \forall_{\varepsilon > 0} \ \exists_{\delta > 0} : 0 < |x| < \delta \implies |R(x)| < \varepsilon |x|.$

Question 2. Let $f_n:[0,1]\to\mathbb{R}$ be defined by

$$f_n(x) = 1 - \frac{1}{1 + n(1+x)}.$$

- a) (2 points) Prove that f_n converges uniformly on [0,1].
- b) (2 points) Now state and use a theorem to show that $\int_0^1 f_n(x) dx \to 1$ as $n \to \infty$.

Grading/answers.

a) Since $1 + x \ge 1$ the denominator in the fraction goes to ∞ for all $x \in [0,1]$ so the limit should be 1. Let $\varepsilon > 0$. Since

$$|f_n(x) - 1| = \left| \frac{1}{1 + n(1+x)} \right| = \frac{1}{1 + n(1+x)} \le \frac{1}{1+n} \le \frac{1}{1+N} < \varepsilon$$

for all $n \geq N$ provided $N \in \mathbb{N}$ satisfies

$$\frac{1}{1+N} < \varepsilon.$$

Such an N exists in view of Theorem 1.5 (The Archimedean Principle). Otherwise $\frac{1}{\varepsilon} \in \mathbb{R}$ would be an upper bound for \mathbb{N} , and Archimedes wouldn't allow for that.

Thus we have verified Definition 4.18 with f(x) = 1 for all $x \in [0, 1] = [a, b]$.

Alternatively you may use Definition 4.9 and say that

$$|f_n - f|_{max} = \max_{0 \le x \le 1} |f_n(x) - f(x)| = \max_{0 \le x \le 1} \left| \frac{1}{1 + n(1 + x)} \right| = \frac{1}{1 + n} \le \frac{1}{1 + N} < \varepsilon$$

holds for $n \geq N$ provided N is chosen as above.

b) The theorem you should know and apply is Theorem 17.3, the fundamental limit theorem. It follows that $\int_0^1 f_n \to \int_0^1 1 = 1$ as $n \to \infty$. You will also get full points for the observation that f_n is integrable by Theorem 8.6, and that consequently (note b - a = 1 - 0 = 1)

$$\left| \int_0^1 f_n - 1 \right| = \left| \int_0^1 (f_n - 1) \right| \le \left| f_n - 1 \right|_{max} = \frac{1}{1+n} \to 0.$$

Question 3. (2 points) Let $f: \mathbb{R} \to \mathbb{R}$ satisfy

$$f(x) = \frac{x}{1 + f(x)^2}$$

for all $x \in \mathbb{R}$.

a) (1 point) Verify that

$$f(x) - x = -\frac{xf(x)^2}{1 + f(x)^2}.$$

b) (1 point) Prove that f is differentiable in x = 0 with f'(0) = 1.

Hint: denote the right hand side in a) by R(x) and use $|f(x)| \le |x|$ for its numerator.

Grading/answers. NB This is 3 in the second exam. Also for 2 points.

a) This item prepares for f(x) = 1 x + R(x) and the conclusion that f'(0) = 1, whereas 1g) above is about f(x) = 0 x + R(x) and the conclusion that f'(0) = 0. Here we thus have

$$R(x) = f(x) - x = \frac{x}{1 + f(x)^2} - x = \frac{x - x - xf(x)^2}{1 + f(x)^2} = -\frac{xf(x)^2}{1 + f(x)^2},$$

in which we will then want

$$\frac{f(x)^2}{1+f(x)^2} < \varepsilon.$$

b) Observe that by a) and the equation for f(x) the remainder term R(x) may be estimated by

$$|R(x)| = |f(x) - x| = \frac{|x|f(x)^2}{1 + f(x)^2} \le \frac{|x|x^2}{1 + f(x)^2} \le |x|x^2 \le \varepsilon |x|,$$

provided $x^2 < \varepsilon$. So choose $\delta > 0$ with $\delta^2 = \varepsilon$ to conclude that

$$\forall_{\varepsilon > 0} \exists_{\delta > 0} : 0 < |x| < \delta \implies |R(x)| < \varepsilon |x|.$$

Question 4. (4 points) Let $f:(0,1)\to\mathbb{R}$ be defined by

$$f(x) = x^3 + \frac{1}{x^2} + \frac{1}{1 - x}.$$

Prove that f has a minimum in (0,1).

Consider a sequence $y_n \in R_f = \{f(x) : 0 < x < 1\}$ which converges to the infimum of R_f .

Grading/answers. Not all the details below are needed for full points of course. Definition 4.1 is not really needed because f(x) is given by an algebraic expression

- (i) The function f is defined by a formula for f(x) as sum of 3 terms. Each of these terms is positive, so 0 is a lower bound for the (clearly non-empty) range R_f of f. Let m be the largest lower bound (infimum) of R_f . Then $m \geq 0$, and for all $n \in \mathbb{N}$ the number $m + \frac{1}{n}$ is not a lower bound, implying the existence of $y_n \in R_f$ with $m \leq y_n < m + \frac{1}{n}$. In particular we now have a sequence $y_n \in R_f$ and clearly $y_n \to m$ as $n \to \infty$.
- (ii) Since $y_n \in R_f$ we have by definition of R_f the existence of $x_n \in (0,1)$ with $f(x_n) = y_n$, this for every $n \in \mathbb{N}$. The sequence x_n cannot so easily been shown to converge, but 1c above tells you it has a convergent subsequence. Subsequences are denoted by x_{n_k} in Section 3.3, so let $\bar{x} = \lim_{k \to \infty} x_{n_k}$ be the limit of the subsequence, which we called limit point of the original sequence in Definition 3.21.
- (iii) Since $(0,1) \subset [0,1]$ and the closed interval [0,1] is closed, it follows that $\bar{x} \in [0,1]$. To complete the proof you have to show $\bar{x} \in (0,1)$. By construction $f(x_{n_k}) = y_{n_k} \to m$ as $k \to \infty$, and in particular the sequence $f(x_{n_k})$ is bounded from above by some M > 0. The lower estimates

$$f(x) > \frac{1}{x^2} > \frac{1}{x}, \quad f(x) > \frac{1}{1-x}$$

imply for all $k \in \mathbb{N}$ that

$$\frac{1}{x_{n_k}} < M, \quad \frac{1}{1 - x_{n_k}} < M,$$

whence

$$x_{n_k} > \frac{1}{M}, \quad 1 - x_{n_k} > \frac{1}{M},$$

prohibiting $x_{n_k} \to 0$ and $x_{n_k} \to 1$.

(iv) Thus $\bar{x} \in (0,1)$ and the limit theorems (Theorem 2.36 and Theorem 2.40) now imply that $f(x_{n_k}) \to f(\bar{x})$ as $k \to \infty$. Since $f(x_{n_k}) \to m$ it follows that

$$f(\bar{x}) = m = \inf_{0 < x < 1} f(x),$$

whence $f(x) \ge f(\bar{x})$ for all $x \in (0,1)$. This completes the proof.

Question 5. (2 points) Suppose that the power series

$$J(x) = a_0 - a_2 x^2 + a_4 x^4 - a_6 x^6 + \dots = \sum_{k=0}^{\infty} (-1)^k a_{2k} x^{2k}$$

has a positive radius R of convergence.

a) (1 point) Fix $r \in (0, R)$. Suppose that J is a solution of the differential equation

$$J''(x) + \frac{1}{x}J'(x) + J(x) = 0$$

on (0, r). Show that the coefficients satisfy the recurrence relation $a_{2(k-1)} = (2k)^2 a_{2k}$ for all $k \in \mathbb{N}$. Hint: use

$$J''(x) + \frac{1}{x}J'(x) = \frac{1}{x}(xJ'(x))'$$

to make the term by term calculations easier.

For the solution with $a_0 = 1$ it follows that

$$J(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^k (k!)^2} x^{2k}.$$

b) (1 point) Explain why $R = \infty$.

Grading/answers. NB This 4 in the second exam.

a) Put a few more terms and write

$$J(x) = a_0 - a_2 x^2 + a_4 x^4 - a_6 x^6 + a_8 x^8 - a_{10} x^{10} + \cdots,$$

to conclude for |x| < R that

$$J'(x) = -2a_2x + 4a_4x^3 - 6a_6x^5 + 8a_8x^7 - 10a_{10}x^9 + \cdots,$$

$$xJ'(x) = -2a_2x^2 + 4a_4x^4 - 6a_6x^6 + 8a_8x^8 - 10a_{10}x^{10} + \cdots,$$

$$(xJ'(x))' = -2^2a_2x + 4^2a_4x^3 - 6^2a_6x^5 + 8^2a_8x^7 - 10^2a_{10}x^9 + \cdots,$$

$$\frac{1}{x}(xJ'(x))' = -2^2a_2 + 4^2a_4x^2 - 6^2a_6x^4 + 8^2a_8x^6 - 10^2a_{10}x^8 + \cdots,$$

and put this equal to

$$-J(x) = -a_0 + a_2 x^2 - a_4 x^4 + a_6 x^6 - a_8 x^8 + a_{10} x^{10} - \dots,$$

to conclude that

$$-2^2a_2=-a_0,\quad 4^2a_4=a_2,\quad -6^2a_6=-a_4,\quad 8^2a_8=a_6,$$

and so on. We recognise $(2k)^2 a_{2k} = a_{2(k-1)}$ for k = 1, 2, 3, ...

Alternatively we have for |x| < R that

$$J(x) = \sum_{k=0}^{\infty} (-1)^k a_{2k} x^{2k} \implies J'(x) = \sum_{k=0}^{\infty} (-1)^k 2k a_{2k} x^{2k-1} = \sum_{k=1}^{\infty} (-1)^k 2k a_{2k} x^{2k-1}$$

$$\implies x J'(x) = \sum_{k=1}^{\infty} (-1)^k 2k a_{2k} x^{2k} \implies (x J'(x))' = \sum_{k=1}^{\infty} (-1)^k (2k)^2 a_{2k} x^{2k-1}$$

$$\implies \frac{1}{x} (x J'(x))' = \sum_{k=1}^{\infty} (-1)^k (2k)^2 a_{2k} x^{2k-2},$$

which equated to

$$-J(x) = -\sum_{k=0}^{\infty} (-1)^k a_{2k} x^{2k} = \sum_{k=1}^{\infty} (-1)^k a_{2k-2} x^{2k-2}$$

gives $a_{2k-2} = (2k)^2 a_{2k}$.

Without the hint you would do

$$\frac{J'(x)}{x} = -2a_2 + 4a_4x^2 - 6a_6x^4 + 8a_8x^6 - 10a_{10}x^8 + \cdots,$$

$$J''(x) = -2a_2 + 4 \cdot 3a_4x^2 - 6 \cdot 5a_6x^4 + 8 \cdot 7a_8x^6 - 10 \cdot 9a_{10}x^8 + \cdots,$$

whence

$$J''(x) + \frac{1}{x}J'(x) + J(x) = a_0 - 2a_2 - 2a_2 + (-a_2 + 4a_4 + 4 \cdot 3a_4)x^2 + (a_4 - 6a_6 - 6 \cdot 5a_6)x^4 + (-a_6 + 8a_8 + 8 \cdot 7a_8)x^6 + \cdots,$$

which is zero if $a_0 = (2+2)a_2 = 2 \cdot 2a_2$, $a_2 = 4 \cdot 4a_4$, $a_4 = 6 \cdot 6a_6$, and so on. You should recognise $a_{2(k-1)} = (2k)^2 a_{2k}$ for all $k \in \mathbb{N}$.

Alternatively we have for |x| < R that

$$J(x) = \sum_{k=0}^{\infty} (-1)^k a_{2k} x^{2k} \implies J'(x) = \sum_{k=0}^{\infty} (-1)^k 2k a_{2k} x^{2k-1} = \sum_{k=1}^{\infty} (-1)^k 2k a_{2k} x^{2k-1} \implies \frac{J'(x)}{x} = \sum_{k=1}^{\infty} (-1)^k 2k a_{2k} x^{2k-2}, \quad J''(x) = \sum_{k=0}^{\infty} (-1)^k 2k (2k-1) a_{2k} x^{2k-2},$$

whence

$$J''(x) + \frac{J'(x)}{x} = \sum_{k=1}^{\infty} (-1)^k (2k(2k-1) + 2k) a_{2k} x^{2k-2} = \sum_{k=1}^{\infty} (-1)^k (2k)^2 a_{2k} x^{2k-2},$$

which equated to

$$-J(x) = -\sum_{k=0}^{\infty} (-1)^k a_{2k} x^{2k} = \sum_{k=1}^{\infty} (-1)^k a_{2k-2} x^{2k-2}$$

gives $a_{2k-2} = (2k)^2 a_{2k}$.

b) The recurrence $a_{2(k-1)} = (2k)^2 a_{2k}$ implies the formula for J(x), with the individual terms going to zero for each x. As discussed in the last week this implies that $R \ge |x|$ for every x so $R = \infty$.

Question 6. (4 points) Let $x \in [0,1]$ and let $F_x : [0,\infty) \to \mathbb{R}$ be defined by

$$F_x(y) = 1 + x + \frac{y}{1+y}.$$

a) (1 point) Show that F_x is a contraction with contraction factor $\frac{1}{4}$ from $[1,\infty)$ to itself.

For every function $f:[0,1]\to [1,\infty)$ we define a new function $g=\Phi(f)$ by setting $g(x)=F_x(f(x))$ for all $x\in [0,1]$. This defines a map Φ from

$$A = \{ f \in C([0,1]) : \forall_{x \in [0,1]} \ f(x) \ge 1 \}$$

to itself. You don't have to prove that $g = \Phi(f)$ is continuous for every $f \in A$, and you may use that A is a closed subset of C([0,1]).

b) (1 point) Prove that Φ has a unique fixed point.

Bonus. Define Ψ by setting

$$g = \Psi(f), \quad g(x) = \int_0^x F_s(f(s)) ds = \int_0^x (1+s+\frac{f(s)}{1+f(s)}) ds$$

for every f in

$$B = \{ f \in C([0,1]) : \forall_{x \in [0,1]} \ f(x) \ge x \}.$$

You don't have to prove that B is a closed subset of C([0,1]).

c) (2 points) Prove that Ψ has a unique fixed point in B.

Hint: modify the estimate in a) using $f(s) \ge s$ to derive that

$$|F_s(f_1(s)) - F_s(f_2(s))| \le \frac{|f_1 - f_2|_{max}}{(1+s)^2}$$

Grading/answers. NB 6c is more less 5 in the second exam. In 5b you have to remark that Ψ maps B to B. In 5c you have to remar that every nonnegative solution is in B.

Note that Φ in 6 of the full exam maps

$$X = \{ f \in C([0,1]) : \forall_{x \in [0,1]} \ f(x) > 0 \}$$

to A, and likewise Ψ maps X to B. So the solutions of $\Phi(f) = f$ and $\Psi(f) = f$ are unique in X.

a) Fix $x \in [0,1]$. Clearly $F_x(y) = 1 + x + \frac{y}{1+y} \ge 1$ for every $y \in [1,\infty)$, so F_x is a map from $[1,\infty)$ to itself. We only used $x \ge 0$ to conclude so. What follows holds for all x.

Since

$$F_x(y_1) - F_x(y_2) = \frac{y_1}{1+y_1} - \frac{y_2}{1+y_2} = \frac{(1+y_2)y_1 - (1+y_1)y_2}{(1+y_1)(1+y_2)} = \frac{y_1 - y_2}{(1+y_1)(1+y_2)}$$

implies

$$|F_x(y_1) - F_x(y_2)| = \left| \frac{y_1 - y_2}{(1 + y_1)(1 + y_2)} \right| = \frac{|y_1 - y_2|}{(1 + y_1)(1 + y_2)} \le \frac{|y_1 - y_2|}{(1 + 1)(1 + 1)} = \frac{1}{4}|y_1 - y_2|$$

for all $y_1, y_2 \in [1, \infty)$, the map F_x is contractive on $[1, \infty)$ with contraction factor $\frac{1}{4}$ for every x.

b) Now let f_1 and f_2 be continuous functions from the x-interval to $[0, \infty)$, and let $g_1 = \Phi(f_1)$, $g_2 = \Phi(f_2)$. Then by a) it follows that

$$|g_1(x) - g_2(x)| \le \frac{1}{4} |f_1(x) - f_2(x)| \le \frac{1}{4} |f_1 - f_2|_{max}$$

for every $x \in [0,1]$, since f_1 and f_2 have $f_1(x) \ge 1$ and $f_2(x) \ge 1$ for all $x \in [0,1]$. Here we use the maximum norm on C([0,1]). Since g_1 and g_1 are continuous this implies that the maximum of $|g_1(x) - g_2(x)|$ on [0,1] exists and is less or equal than the right hand side, that is

$$|\Phi(f_1) - \Phi(f_2)|_{max} = |g_1 - g_2|_{max} \le \frac{1}{4}|f_1 - f_2|_{max}.$$

This holds for all f_1, f_2 in

$$A = \{ f \in C([0,1]) : \forall_{x \in [0,1]} \ f(x) \ge 1 \}.$$

So $\Phi: A \to A$ is contraction on the closed subset A of the complete metric space C([0,1]). It follows that Φ has a unique fixpoint.

c) Since

$$1 \le (1+s+\frac{f(s)}{1+f(s)}) \le 1+1+1=3$$

every such function q has

$$g(x) = \int_0^x (1+s+\frac{f(s)}{1+f(s)}) \, ds \ge \int_0^x 1 = x$$

for every x, and is Lipschitz continuous with Lipschitz constant 3. It follows that Ψ maps B to B. Following the hint

$$|F_x(y_1) - F_x(y_2)| = \left| \frac{y_1 - y_2}{(1 + y_1)(1 + y_2)} \right| = \frac{|y_1 - y_2|}{(1 + y_1)(1 + y_2)} \le \frac{|y_1 - y_2|}{(1 + x)(1 + x)} = \frac{1}{(1 + x)^2} |y_1 - y_2|,$$

SO

$$|g_1(x) - g_2(x)| = |\int_0^x F_s(f_1(s)) ds - \int_0^x F_s(f_2(s)) ds| = |\int_0^x (F_s(f_1(s)) - F_s(f_2(s)) ds|$$

$$\leq \int_0^x |F_s(f_1(s)) - F_s(f_2(s))| ds \leq \int_0^x \frac{1}{(1+s)^2} |f_1(s) - f_2(s)| ds$$

$$\leq \int_0^x \frac{|f_1 - f_2|_{max}}{(1+s)^2} ds = \int_0^x \frac{1}{(1+s)^2} ds |f_1 - f_2|_{max} \leq \frac{1}{2} |f_1 - f_2|_{max}.$$

Thus $\Psi: B \to B$ is a contraction and thereby has a unique fixpoint.