
Vrije Universiteit Amsterdam June 6 2022
Mathematical Analysis, full exam, answers First examiner: Joost Hulshof
8.30-11.30 Full examiner: Bob Rink

Write the calculations and arguments that lead to your answers. Motivate your answers. You can use earlier
statements, even if you failed to prove them. Calculators/communication/internet sources NOT allowed.

Your grade will be min(10, 1 + T/2), T your total score, maximum T = 20, 6c is bonus.
The first 3 questions are sufficient for grade 6. Questions 4,5,6 are on the other side.
NB Each point is half a point of the grade, in de second exam each point is 1 point of the grade.

Question 1. (4 points) Some basic theory.

a) ( 1
2 point) Give the ε-definition of xn → x̄, both in IR and in a metric space X.

b) ( 1
2 point) Give the limit definition of continuity of f : A→ IR in ξ ∈ A, A ⊂ IR.

c) ( 1
2 point) Which single condition on a sequence xn ∈ IR implies existence of a convergent subsequence?

d) ( 1
2 point) For f, g ∈ C([a, b]) give the definition of the uniform distance d(f, g).

e) ( 1
2 point) Give the ε-criterion for the integrability of a bounded function f : [0, 1]→ IR.

f) ( 1
2 point) Give the ε, δ-definition for the uniform continuity of a function f : [0, 1]→ IR.

g) ( 1
2 point) Give the ε, δ-condition for f : IR→ IR to be differentiable in 0 with f ′(0) = 0 if f(0) = 0.

h) ( 1
2 point) Give the conditions on f : [a, b]→ IR which imply the existence of ξ ∈ (a, b) with

f(b)− f(a)

b− a
= f ′(ξ).

Grading/answers. NB The last 4 are the 4 items of 1 in the second exam.

a) Definition 2.6: (2.8) with L = x̄, as in (2.10),

Definition 5.10 second statement, without the first quantor.

b) Definition 4.1.

c) Boundedness, see Theorem 3.20 (Bolzano-Weierstrass).

d) (4.1) in Definition 4.8, norm given by Definition 4.5, repeated in first paragraph of Chapter 5.

e) Definition 8.7.

f) Theorem 7.2, first sentence.

g) ∀ε>0 ∃δ>0 : 0 < |x| < δ =⇒ |R(x)| < ε |x|.
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Question 2. Let fn : [0, 1]→ IR be defined by

fn(x) = 1− 1

1 + n(1 + x)
.

a) (2 points) Prove that fn converges uniformly on [0, 1].

b) (2 points) Now state and use a theorem to show that
∫ 1

0
fn(x) dx→ 1 as n→∞.

Grading/answers.

a) Since 1 + x ≥ 1 the denominator in the fraction goes to ∞ for all x ∈ [0, 1] so the limit should be 1.
Let ε > 0. Since

|fn(x)− 1| = | 1

1 + n(1 + x)
| = 1

1 + n(1 + x)
≤ 1

1 + n
≤ 1

1 +N
< ε

for all n ≥ N provided N ∈ IN satisfies
1

1 +N
< ε.

Such an N exists in view of Theorem 1.5 (The Archimedean Principle). Otherwise 1
ε ∈ IR would be an

upper bound for IN, and Archimedes wouldn’t allow for that.

Thus we have verified Definition 4.18 with f(x) = 1 for all x ∈ [0, 1] = [a, b].

Alternatively you may use Definition 4.9 and say that

|fn − f |max
= max

0≤x≤1
|fn(x)− f(x)| = max

0≤x≤1
| 1

1 + n(1 + x)
| = 1

1 + n
≤ 1

1 +N
< ε

holds for n ≥ N provided N is chosen as above.

b) The theorem you should know and apply is Theorem 17.3, the fundamental limit theorem. It follows

that
∫ 1

0
fn →

∫ 1

0
1 = 1 as n→∞. You will also get full points for the observation that fn is integrable

by Theorem 8.6, and that consequently (note b− a = 1− 0 = 1)

|
∫ 1

0

fn − 1| = |
∫ 1

0

(fn − 1)| ≤ |fn − 1|max =
1

1 + n
→ 0.
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Question 3. (2 points) Let f : IR→ IR satisfy

f(x) =
x

1 + f(x)2

for all x ∈ IR.

a) (1 point) Verify that

f(x)− x = − xf(x)2

1 + f(x)2
.

b) (1 point) Prove that f is differentiable in x = 0 with f ′(0) = 1.

Hint: denote the right hand side in a) by R(x) and use |f(x)| ≤ |x| for its numerator.

Grading/answers. NB This is 3 in the second exam. Also for 2 points.

a) This item prepares for f(x) = 1x+R(x) and the conclusion that f ′(0) = 1, whereas 1g) above is about
f(x) = 0x+R(x) and the conclusion that f ′(0) = 0. Here we thus have

R(x) = f(x)− x =
x

1 + f(x)2
− x =

x− x− xf(x)2

1 + f(x)2
= − xf(x)2

1 + f(x)2
,

in which we will then want
f(x)2

1 + f(x)2
< ε.

b) Observe that by a) and the equation for f(x) the remainder term R(x) may be estimated by

|R(x)| = |f(x)− x| = |x|f(x)2

1 + f(x)2
≤ |x|x2

1 + f(x)2
≤ |x|x2 ≤ ε|x|,

provided x2 < ε. So choose δ > 0 with δ2 = ε to conclude that

∀ε>0 ∃δ>0 : 0 < |x| < δ =⇒ |R(x)| < ε |x|.
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Question 4. (4 points) Let f : (0, 1)→ IR be defined by

f(x) = x3 +
1

x2
+

1

1− x
.

Prove that f has a minimum in (0, 1).

Consider a sequence yn ∈ Rf = {f(x) : 0 < x < 1} which converges to the infimum of Rf .

Grading/answers. Not all the details below are needed for full points of course. Definition 4.1 is not really
needed because f(x) is given by an algebraic expression

(i) The function f is defined by a formula for f(x) as sum of 3 terms. Each of these terms is positive, so 0
is a lower bound for the (clearly non-empty) range Rf of f . Let m be the largest lower bound (infimum)
of Rf . Then m ≥ 0, and for all n ∈ IN the number m + 1

n is not a lower bound, implying the existence of
yn ∈ Rf with m ≤ yn < m + 1

n . In particular we now have a sequence yn ∈ Rf and clearly yn → m as
n→∞.

(ii) Since yn ∈ Rf we have by definition of Rf the existence of xn ∈ (0, 1) with f(xn) = yn, this for every
n ∈ IN. The sequence xn cannot so easily been shown to converge, but 1c above tells you it has a convergent
subsequence. Subsequences are denoted by xnk

in Section 3.3, so let x̄ = limk→∞ xnk
be the limit of the

subsequence, which we called limit point of the original sequence in Definition 3.21.

(iii) Since (0, 1) ⊂ [0, 1] and the closed interval [0, 1] is closed, it follows that x̄ ∈ [0, 1]. To complete the
proof you have to show x̄ ∈ (0, 1). By construction f(xnk

) = ynk
→ m as k → ∞, and in particular the

sequence f(xnk
) is bounded from above by some M > 0. The lower estimates

f(x) >
1

x2
>

1

x
, f(x) >

1

1− x

imply for all k ∈ IN that
1

xnk

< M,
1

1− xnk

< M,

whence

xnk
>

1

M
, 1− xnk

>
1

M
,

prohibiting xnk
→ 0 and xnk

→ 1.

(iv) Thus x̄ ∈ (0, 1) and the limit theorems (Theorem 2.36 and Theorem 2.40) now imply that f(xnk
)→ f(x̄)

as k →∞. Since f(xnk
)→ m it follows that

f(x̄) = m = inf
0<x<1

f(x),

whence f(x) ≥ f(x̄) for all x ∈ (0, 1). This completes the proof.
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Question 5. (2 points) Suppose that the power series

J(x) = a0 − a2x2 + a4x
4 − a6x6 + · · · =

∞∑
k=0

(−1)ka2kx
2k

has a positive radius R of convergence.

a) (1 point) Fix r ∈ (0, R). Suppose that J is a solution of the differential equation

J ′′(x) +
1

x
J ′(x) + J(x) = 0

on (0, r). Show that the coefficients satisfy the recurrence relation a2(k−1) = (2k)2a2k for all k ∈ IN.

Hint: use

J ′′(x) +
1

x
J ′(x) =

1

x
(xJ ′(x))′

to make the term by term calculations easier.

For the solution with a0 = 1 it follows that

J(x) =

∞∑
k=0

(−1)k

2k(k!)2
x2k.

b) (1 point) Explain why R =∞.

Grading/answers. NB This 4 in the second exam.

a) Put a few more terms and write

J(x) = a0 − a2x2 + a4x
4 − a6x6 + a8x

8 − a10x10 + · · · ,

to conclude for |x| < R that

J ′(x) = −2a2x+ 4a4x
3 − 6a6x

5 + 8a8x
7 − 10a10x

9 + · · · ,

xJ ′(x) = −2a2x
2 + 4a4x

4 − 6a6x
6 + 8a8x

8 − 10a10x
10 + · · · ,

(xJ ′(x))′ = −22a2x+ 42a4x
3 − 62a6x

5 + 82a8x
7 − 102a10x

9 + · · · ,
1

x
(xJ ′(x))′ = −22a2 + 42a4x

2 − 62a6x
4 + 82a8x

6 − 102a10x
8 + · · · ,

and put this equal to

−J(x) = −a0 + a2x
2 − a4x4 + a6x

6 − a8x8 + a10x
10 − · · · ,

to conclude that
−22a2 = −a0, 42a4 = a2, −62a6 = −a4, 82a8 = a6,

and so on. We recognise (2k)2a2k = a2(k−1) for k = 1, 2, 3, . . . .

Alternatively we have for |x| < R that

J(x) =

∞∑
k=0

(−1)ka2kx
2k =⇒ J ′(x) =

∞∑
k=0

(−1)k2ka2kx
2k−1 =

∞∑
k=1

(−1)k2ka2kx
2k−1

=⇒ xJ ′(x) =

∞∑
k=1

(−1)k2ka2kx
2k =⇒ (xJ ′(x))′ =

∞∑
k=1

(−1)k(2k)2a2kx
2k−1

=⇒ 1

x
(xJ ′(x))′ =

∞∑
k=1

(−1)k(2k)2a2kx
2k−2,
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which equated to

−J(x) = −
∞∑
k=0

(−1)ka2kx
2k =

∞∑
k=1

(−1)ka2k−2x
2k−2

gives a2k−2 = (2k)2a2k.

Without the hint you would do

J ′(x)

x
= −2a2 + 4a4x

2 − 6a6x
4 + 8a8x

6 − 10a10x
8 + · · · ,

J ′′(x) = −2a2 + 4 · 3a4x2 − 6 · 5a6x4 + 8 · 7a8x6 − 10 · 9a10x8 + · · · ,

whence

J ′′(x)+
1

x
J ′(x)+J(x) = a0−2a2−2a2+(−a2+4a4+4·3a4)x2+(a4−6a6−6·5a6)x4+(−a6+8a8+8·7a8)x6+· · · ,

which is zero if a0 = (2 + 2)a2 = 2 · 2a2, a2 = 4 · 4a4, a4 = 6 · 6a6, and so on. You should recognise
a2(k−1) = (2k)2a2k for all k ∈ IN.

Alternatively we have for |x| < R that

J(x) =

∞∑
k=0

(−1)ka2kx
2k =⇒ J ′(x) =

∞∑
k=0

(−1)k2ka2kx
2k−1 =

∞∑
k=1

(−1)k2ka2kx
2k−1 =⇒

J ′(x)

x
=

∞∑
k=1

(−1)k2ka2kx
2k−2, J ′′(x) =

∞∑
k=0

(−1)k2k(2k − 1)a2kx
2k−2,

whence

J ′′(x) +
J ′(x)

x
=

∞∑
k=1

(−1)k(2k(2k − 1) + 2k)a2kx
2k−2 =

∞∑
k=1

(−1)k(2k)2a2kx
2k−2,

which equated to

−J(x) = −
∞∑
k=0

(−1)ka2kx
2k =

∞∑
k=1

(−1)ka2k−2x
2k−2

gives a2k−2 = (2k)2a2k.

b) The recurrence a2(k−1) = (2k)2a2k implies the formula for J(x), with the individual terms going to
zero for each x. As discussed in the last week this implies that R ≥ |x| for every x so R =∞.
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Question 6. (4 points) Let x ∈ [0, 1] and let Fx : [0,∞)→ IR be defined by

Fx(y) = 1 + x+
y

1 + y
.

a) (1 point) Show that Fx is a contraction with contraction factor 1
4 from [1,∞) to itself.

For every function f : [0, 1] → [1,∞) we define a new function g = Φ(f) by setting g(x) = Fx(f(x))
for all x ∈ [0, 1]. This defines a map Φ from

A = {f ∈ C([0, 1]) : ∀x∈[0,1] f(x) ≥ 1}

to itself. You don’t have to prove that g = Φ(f) is continuous for every f ∈ A, and you may use that
A is a closed subset of C([0, 1]).

b) (1 point) Prove that Φ has a unique fixed point.

Bonus. Define Ψ by setting

g = Ψ(f), g(x) =

∫ x

0

Fs(f(s)) ds =

∫ x

0

(1 + s+
f(s)

1 + f(s)
) ds

for every f in
B = {f ∈ C([0, 1]) : ∀x∈[0,1] f(x) ≥ x}.

You don’t have to prove that B is a closed subset of C([0, 1]).

c) (2 points) Prove that Ψ has a unique fixed point in B.

Hint: modify the estimate in a) using f(s) ≥ s to derive that

|Fs(f1(s))− Fs(f2(s))| ≤ |f1 − f2|max

(1 + s)2

Grading/answers. NB 6c is more less 5 in the second exam. In 5b you have to remark that Ψ maps B to B.
In 5c you have to remar that every nonnegative solution is in B.

Note that Φ in 6 of the full exam maps

X = {f ∈ C([0, 1]) : ∀x∈[0,1] f(x) ≥ 0}

to A, and likewise Ψ maps X to B. So the solutions of Φ(f) = f and Ψ(f) = f are unique in X.

a) Fix x ∈ [0, 1]. Clearly Fx(y) = 1 + x + y
1+y ≥ 1 for every y ∈ [1,∞), so Fx is a map from [1,∞) to

itself. We only used x ≥ 0 to conclude so. What follows holds for all x.

Since

Fx(y1)− Fx(y2) =
y1

1 + y1
− y2

1 + y2
=

(1 + y2)y1 − (1 + y1)y2
(1 + y1)(1 + y2)

=
y1 − y2

(1 + y1)(1 + y2)

implies

|Fx(y1)− Fx(y2)| = | y1 − y2
(1 + y1)(1 + y2)

| = |y1 − y2|
(1 + y1)(1 + y2)

≤ |y1 − y2|
(1 + 1)(1 + 1)

=
1

4
|y1 − y2|

for all y1, y2 ∈ [1,∞), the map Fx is contractive on [1,∞) with contraction factor 1
4 for every x.
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b) Now let f1 and f2 be continuous functions from the x-interval to [0,∞), and let g1 = Φ(f1), g2 = Φ(f2).
Then by a) it follows that

|g1(x)− g2(x)| ≤ 1

4
|f1(x)− f2(x)| ≤ 1

4
|f1 − f2|max

for every x ∈ [0, 1], since f1 and f2 have f1(x) ≥ 1 and f2(x) ≥ 1 for all x ∈ [0, 1]. Here we use
the maximum norm on C([0, 1]). Since g1 and g1 are continuous this implies that the maximum of
|g1(x)− g2(x)| on [0, 1] exists and is less or equal than the right hand side, that is

|Φ(f1)− Φ(f2)|
max

= |g1 − g2|max
≤ 1

4
|f1 − f2|max

.

This holds for all f1, f2 in
A = {f ∈ C([0, 1]) : ∀x∈[0,1] f(x) ≥ 1}.

So Φ : A → A is contraction on the closed subset A of the complete metric space C([0, 1]). It follows
that Φ has a unique fixpoint.

c) Since

1 ≤ (1 + s+
f(s)

1 + f(s)
) ≤ 1 + 1 + 1 = 3

every such function g has

g(x) =

∫ x

0

(1 + s+
f(s)

1 + f(s)
) ds ≥

∫ x

0

1 = x

for every x, and is Lipschitz continuous with Lipschitz constant 3. It follows that Ψ maps B to B.
Following the hint

|Fx(y1)− Fx(y2)| = | y1 − y2
(1 + y1)(1 + y2)

| = |y1 − y2|
(1 + y1)(1 + y2)

≤ |y1 − y2|
(1 + x)(1 + x)

=
1

(1 + x)2
|y1 − y2|,

so

|g1(x)− g2(x)| = |
∫ x

0

Fs(f1(s)) ds−
∫ x

0

Fs(f2(s)) ds| = |
∫ x

0

(Fs(f1(s))− Fs(f2(s)) ds|

≤
∫ x

0

|Fs(f1(s))− Fs(f2(s))| ds ≤
∫ x

0

1

(1 + s)2
|f1(s)− f2(s))| ds

≤
∫ x

0

|f1 − f2|max

(1 + s)2
ds =

∫ x

0

1

(1 + s)2
ds |f1 − f2|max ≤

1

2
|f1 − f2|max .

Thus Ψ : B → B is a contraction and thereby has a unique fixpoint.


