
Vrije Universiteit Amsterdam Fool’s Day 2022
Mathematical Analysis, midterm exam First examiner: Joost Hulshof
15.30-17.45 Second examiner: Bob Rink

Write the calculations and arguments that lead to your answers. Motivate your answers. You can use earlier
statements, even if you failed to prove them. Calculators/communication/internet sources NOT allowed.

Your grade will be 1 + T , T your total score, with a maxium of 10.
The first 3 exercises are sufficient to pass the midterm, 4 and 5 are on the other side.

Problem 1. Some basic theory needed below.

a) ( 1
2 point) Give the definition of a convergent sequence in IR.

Answer: the sequence xn is convergent if

∃x̄∈IR ∀ε>0 ∃N∈IN ∀n≥N : |xn − x̄|︸ ︷︷ ︸
d(xn,x̄)

< ε.

You really need to mention the limit!

b) ( 1
2 point) What do you need to assume on a subset of IR to know that the infimum of that set exists?

Answer: the subset needs to be non-empty and bounded from below.

NB1 Sets are not monotone. But given a non-empty subset A of IR and a lower bound in IR of A,
m = inf A exists, and thereby a sequence xn ∈ A with m ≤ xn → m as n→∞.

NB2 If you include the assumption that A is closed then the statement is of no use for analysis because
we apply it to non-closed sets, as well as to prove that sets are closed.

c) ( 1
2 point) Formulate the Banach Fixed Point Theorem for contractions on closed subsets A of IR.

Answer: Let A be closed and f : A→ A be a contraction. That is, f maps A to A and

∃θ∈[0,1)∀x,y∈A : |f(x)− f(y)| ≤ θ|x− y|.

Then there exists a unique solution x = x̄ of x = f(x) in A. Every sequence with xn = f(xn−1) for all
n ∈ IN and x0 ∈ A converges to x̄.

NB The uniqueness of the solution of x = f(x) in A is an essential part of the statement, the statement
about the sequences elaborates on the proof, and is not needed in most applications.
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Problem 2. Let the sequence xn indexed by n ∈ IN be defined by

xn =
n

n2 − 2
for n = 1, 2, 3, . . . ,

and note that xn >
1
n for all n ∈ IN with n ≥ 2.

NB Not for n = 1, my bad. This was to prevent you from using xn ≤ 1
n .

In this exercise you should use that no positive number is an upper bound for the set IN.

a) ( 1
2 point) Show that xn ≤ 2

n for all n ≥ 2.

Answer: to check the inequality note that when n2 > 2 these equivalences hold:

n

n2 − 2
≤ 2

n
⇐⇒ n2 ≤ 2(n2 − 2) ⇐⇒ n2 ≥ 4

So for n ≥ 2 the inequality follows.

NB1 This was meant to be easy and help you in b). Don’t even think about using induction here.

NB2 If you do you need to prove that xn+1 ≤ 2
n+1 (don’t forget the +1), assuming xn ≤ 2

n , starting

from n = 2 for which x2 ≤ 2
2 is clear. You can then prove xn+1 ≤ 2

n+1 , but really: the induction
assumption is unlikely to be of much help then.

b) (1 point) Prove that xn is convergent. Hint: guess the limit first.

Answer: your guess should be zero. For the proof you have to estimate

|xn − 0| = n

n2 − 2
.

Without the hint in (a) you should note that you cannot estimate this by 1
n . Splitting n2 in two parts

n

n2 − 2
=

n
n2

2 + n2

2 − 2
≤ n

n2

2

=
2

n

for n ≥ 2 gives the same estimate, so you find that |xn − 0| ≤ 2
n for n ≥ 2.

With the information in (a) you can start directly with let ε > 0. Choose N ∈ IN such that 1
N < ε

2 .
Then

|xn − 0| ≤ 2

n
≤ 2

N
= 2

1

N
< 2

ε

2
= ε

for all n ≥ N . This completes the proof.

Alternatively you can argue that you need to get 2
n smaller than ε. If this is not possible than 2

n ≥ ε
for all n ∈ IN, whence n ≤ 2

ε for all n. But then IN would be bounded in IR from above, a contradiction.
So there must exist N ∈ IN with 2

N < ε. And then also 2
n < ε for all n ≥ N .
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Problem 3. Let fn : [0,∞)→ IR be defined by

fn(x) = 1− 1

1 + nx

a) ( 1
2 point) Determine the limit of the sequence fn(x) for every x ∈ [0,∞). No proof needed.

Answer: For x = 0 we have fn(0) = 0, which does not go anywhere, its limit is 0. For x > 0 your
calculus experience tells you that the second terms goes to 0, and then the limit of the whole expression
should be 1. You will prove it with (c) below.

NB If you fail to note that the pointwise limit has f(0) = 0 and f(x) = 1 for x > 0, and then you can
give a direct proof that fn does not converge uniformly to this (wrong) f . And discover that you had
the wrong limit function....

b) (1 point) Is the sequence fn uniformly convergent on [0, 1]?

Give a direct proof of your answer or invoke a theorem we proved.

Answer: the limit in (a) defines a function f with f(0) = 0 and f(x) = 1 for x > 0. This function is
discontinuous in 0. But we have a theorem that says that the uniform limit of a sequence of continuous
functions must be continuous. Thus the convergence cannot be uniform.

NB1 It is wrong to say that the convergence is not uniform because there are two limits of fn(x):
uniform convergence of a sequence of continuous functions does not imply that the limit function only
takes one value!

NB2 The Banach Fixed Point Theorem is of no use here.

Alternatively: exhibit ε > 0 for which |fn(x)− f(x)| ≥ ε for some x ∈ [0, 1], probably depending on n,
for arbitrarily large n. This x must be positive in view of fn(0) = 0 for all n. Evaluate

|fn(x)− f(x)| = 1

1 + nx

and put x = 1
n to find

|fn(
1

n
)− f(

1

n
)| = 1

1 + 1
=

1

2
.

Let ε = 1
2 . For all n it is now impossible to have |fn(x)−f(x)| < ε for all x ∈ [0, 1]. So the convergence

is not uniform.

NB1 With the right pointwise limit function f you cannot use the maximum norm of fn − f on [0, 1]
because f is not continuous on [0, 1] and neither is fn − f !

NB2 It is true that fn → f uniformly, fn ∈ C([0, 1]), together with [0, 1] 3 xn → 0 implies that
fn(xn)→ f(0), and with xn = 1

n this gives a contradiction.

NB3 Don’t use an M = 1
x -trick. It may mislead you to conclude to uniform convergence!
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c) (1 point) Let a > 0. Prove that fn is uniformly convergent on [a,∞).

Answer: to get rid of of x in |fn(x)− f(x)| estimate

|fn(x)− f(x)| = 1

1 + nx
≤ 1

1 + na

and let ε > 0. The argument is now very much like in 2(b). Choose N ∈ IN with 1
1+Na < ε. This

is possible for otherwise IN would be bounded from above by 1
a ( 1

ε − 1)) in IR. For all n ≥ N and all
x ≥ a it now follows that

|fn(x)− f(x)| = 1

1 + nx
≤ 1

1 + na
< ε.

This completes the proof.

NB1 There is no reason to get rid of the 1 in 1 + nx or 1 + na. It does not help, but it is not wrong,
you can handle 1

na just as easily: |fn(x)− f(x)| = 1
1+nx ≤

1
1+na ≤

1
na ≤

1
Na < ε by taking N > 1

aε .

NB2 This last step is what we might have called a M = 1
a -trick in the notes. Choosing N > 1

ε you end
up with |fn(x)− f(x)| < ε

a . To be straight in the teachings you were told to introduce ε̃ = ε
M = aε in

the ε-statement you have at your disposal, which is the Archimedes statement in this case. Don’t use
an M = 1

x -trick when it’s about uniform convergence.
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Problem 4. Let f : (0, 1)→ IR be defined by

f(x) = x+
1

x
+

1

1− x
,

and let
Rf = {f(x) : x ∈ (0, 1)}

be the range of f .

a) ( 1
2 point) Explain why the infimum m = inf Rf exists as a nonnegative number.

Answer: use 1(b) and the fact that Rf is bounded from below by 0.

So the largest lower bound m must have m ≥ 0.

All this has nothing to do with bounds on x!

b) (1 point) Prove that there exists a monotone sequence xn in (0, 1) such that f(xn) → m as n → ∞.
Hint: use the monotone subsequence theorem.

Answer: to invoke the theorem you need a sequence. Since m is the infimum of Rf there exists for
every n ∈ IN a number yn ∈ Rf such that m ≤ yn < m+ 1

n . The fact that yn ∈ Rf means there exists
xn ∈ (0, 1) such that f(xn) = yn. Apply the monotone subsequence theorem to this sequence to obtain

n1 < n2 < n3 < n4 < · · ·

such that xnk
is monotone in k.

NB All this has nothing to do with monotonicity or boundedness of the sequence f(xn) = yn!

c) (1 point) Prove that m > 0. Hint: show that the limit of the monotone sequence in (ii) is in (0, 1).

NB. This is not the same question as (a)! Answer: Since xnk
is bounded and monotone it follows that

its limit x̄ exists, either as supremum, or as infimum of the subsequence. In case x̄ ∈ (0, 1) it follows
from the limit theorems that

f(xnk
) = xnk

+
1

xnk

+
1

1− xnk

→ x̄+
1

x̄
+

1

1− x̄
= f(x̄) > 0,

but since xn was chosen such that m ≤ f(xn) < m + 1
n we also have f(xnk

) → m. It follows that
m = f(x̄) > 0.

It remains to exclude x̄ = 0 and x̄ = 1. To do so we use the theorem that convergent sequences
are bounded. For x̄ = 1 use that f(xnk

) > 1
1−xnk

to conclude that f(xnk
) would be unbounded,

contradicting its convergence to m. For x̄ = 0 use that f(xnk
) > 1

xnk
to conclude that f(xnk

) would

be unbounded, contradicting again its convergence to m. This completes the proof.

NB1 Note that the continuity of f is not explicitly needed, just the limit theorems for sequences applied
to the subsequence.

NB2 A quicker proof: show directly that f(x) = x+ 1
x+ 1

1−x >
1
x+ 1

1−x , whence f(x) > 1
x ≥

1
2 for x ≤ 1

2

and likewise f(x) > 1
1−x ≥

1
2 for x ≥ 1

2 . Or with some more care that f(x) = x+ 1
x+ 1

1−x >
1
x+ 1

1−x ≥ 1.
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NB Noting that every xn depends on a this next problem easily reformulates as an exercise about a sequence
of functions, say gn, of a, viewing the parameter a as a variable. Renaming a by t perhaps and writing
gn(t) = xn, the functions gn may be considered as lying in C([a, b]).

Problem 5. Let a > 1 and let fa : [0,∞)→ IR be defined by

fa(x) = a− 1

x+ 1
.

Define the sequence xn by x0 = 0 and xn = fa(xn−1) for all n ∈ IN.
Choose A > 0 such that fa(0) = a− 1 ≥ A.

a) (1 point) Show that fa is a contraction from [A,∞) to itself.

Answer: Note that A can be any number in the (non-empty) interval (0, a − 1). Is fa(x) ≥ A when
x ≥ A? We have

fa(x) = a− 1

x+ 1
≥ fa(x) = a− 1

A+ 1
≥ 1 +A− 1

A+ 1
≥ A

because a ≥ A+ 1 and A > 0. Yes, indeed fa maps [A,∞) to itself.

Is fa contractive on [A,∞)? We have

|fa(x)− fa(y)| =
∣∣∣∣a− 1

x+ 1
− a+

1

y + 1

∣∣∣∣ =

∣∣∣∣ 1 + x− 1− y
(1 + x)(1 + y)

∣∣∣∣ =
|x− y|

(1 + x)(1 + y)
≤ |x− y|

(1 +A)2

for all x, y ≥ A, so fa is contractive with contraction factor θ = 1
(1+A)2 < 1.

The last step in the chain is essential. You cannot have x or y in the expression for θ.

b) ( 1
2 point) Prove that xn converges to a positive limit x̄ as n→∞, and that

x̄+
1

1 + x̄
= a.

Answer: note that [A,∞) is closed1 But you cannot directly apply 1(c) because x0 = 0 6∈ [A,∞).
However from (a) you know that x1 = fa(0) ≥ A, so starting the iteration from x1 the sequence xn
converges to a fixed point x̄ of fa in A. Re-arrange x̄ = fa(x̄) to find the equation for x̄ in the exercise.

c) (bonus point) Prove or disprove that xn is a monotone sequence.

Answer: this one of these cases where proof by induction (domino principle) does indeed help to find
the answer. We know that x1 > x0 since x1 ≥ A > 0 = x0. Now suppose that we know that xn > xn−1

for some n ∈ IN. Then

xn+1 − xn = fa(xn)− fa(xn−1) = a− 1

xn + 1
− a+

1

xn−1 + 1
=

xn − xn−1

(1 + xn)(1 + xn−1)
> 0

so xn+1 > xn. Apply this with n = 1 to find x2 > x1, with n = 2 to find x3 > x2, and so on. Since
clearly A < xn < a for all n > 1 it follows that the limit of the sequence exists as the supremum of the
sequence in (A, a].

NB So this could be formulated with induction, if you like...

1’closed’ defined using limit statements. The definition via openness of the complement in IR is of no direct use here.


