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Write the calculations and arguments that lead to your answers. Motivate your answers. You can and
will have to use earlier statements, even if you failed to prove them. Calculators/communication/internet
sources NOT allowed.

Your grade will be 1 + T , T your total score, maximal T = 9.

Problem 1. (2 points) Some basic theory needed for this exam.

a) ( 1
3 point) Give an ε,N -definition for the sequence fn ∈ C([0, 1]) to be a Cauchy sequence in C([0, 1]).

b) ( 1
3 point) Let f : [0, 1]→ IR be a bounded function. For a partition P given by N ∈ IN and points

0 = x0 ≤ x1 ≤ · · · ≤ xN = 1

we write
N∑
n=1

mn(xn − xn−1) = S ≤ S̄ =

N∑
n=1

Mn(xn − xn−1)

in which
mn = inf

x∈[xn−1,xn]
f(x), Mn = sup

x∈[xn−1,xn]

f(x).

Formulate an ε-statement that characterises the integrability of f on [0, 1] in terms of differences S̄−S.

c) ( 1
3 point) Formulate the Banach Fixed Point Theorem for maps f : [0, 1]→ [0, 1].

d) ( 1
3 point) Formulate the Banach Fixed Point Theorem for maps Φ : C([0, 1])→ C([0, 1]).

e) ( 1
3 point) Let f : IR→ IR and let R(x) = f(x)− x for x ∈ IR.

Give the ε, δ-statement on the remainder term R(x) for f to be differentiable in x = 0 with f ′(0) = 1.

f) ( 1
3 point) Let (a, b) be an open non-empty interval in IR, and let f ∈ C([a, b]) be differentiable on (a, b).

Formulate the Mean Value Theorem for f on [a, b].

Problem 2. (1 point) Prove that 2x = 1 + sinx has a unique solution in [0, 1].
You may use what you know about cos and sin from calculus.

Problem 3. (1 point) Let f : [0, 1]→ IR and assume that |f(x)− f(y)| ≤ |x− y| for all x, y ∈ [0, 1].
Prove that f is integrable on [0, 1].

Problem 4. (1 point) Define f : IR→ IR by

f(x) =
1 + x

4
5 + x4

1 + x4

for all x ∈ IR.
Use the ε, δ-statement for the appropriate remainder term to show that f is differentiable in x = 0.

With everything correct so far your grade will be at least 6.
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Recall that C([0, 1]), the space of all real valued continuous functions on [0, 1], is complete with respect to
the metric d defined by the maximum norm:

d(f, g) = max
0≤x≤1

|f(x)− g(x)| = |f − g|max , f, g ∈ C([0, 1]).

Problem 5. ( 3
2 points) Define Φ : C([0, 1])→ C([0, 1]) by

Φ(f)(x) = 3 +

∫ x

0

f(s)

2 + s
ds

for all x ∈ [0, 1] and all f ∈ C([0, 1]). You don’t have to prove that Φ is well defined.
Prove that Φ has a unique fixed point in C([0, 1]).

Problem 6. Let p(x) be a power series of the form

p(x) = x+ a3x
3 + a5x

5 + a7x
7 + · · · ,

in which the coefficients a2n+1 indexed by n ∈ IN are all positive.

a) ( 1
2 point) Find an expression for a2n+1, n ∈ IN, if it is given that

p′′(x) = p(x)

for every x ∈ [0, 1].

Write fn for the function defined by

fn(x) = x+ a3x
3 + a5x

5 + a7x
7 + · · ·+ a2n+1x

2n+1 = x+

n∑
k=1

a2k+1x
2k+1

for all x ∈ [0, 1].

b. ( 1
2 point) Show that fn(1) is a convergent sequence in IR.

c. ( 1
2 point) Show that fn is a convergent sequence in C([0, 1]).

Problem 7. (1 point) Let fn ∈ C([0, 1]) be a bounded sequence with the property that fn(q) is a Cauchy
sequence in IR for every q ∈ IQ ∩ [0, 1].

a. Let ε > 0 and δ > 0 and assume that

∀x,y∈[0,1] ∀n∈IN : |x− y| < δ =⇒ |fn(x)− fn(y)| < ε

Prove that there is an N ∈ IN such that |fn − fm|max < 3ε for all m,n ≥ IN.

Hint: use
|fn(x)− fm(x)| ≤ |fn(x)− fn(q)|+ |fn(q)− fm(q)|+ |fm(q)− fm(x)|

with

q =
j

N
,

j ∈ {0, 1, . . . , N} and N fixed. How would Archimedes choose N?

b. Assume that the ε, δ-statement

∀ε>0 ∃δ>0 ∀x,y∈[0,1] ∀n∈IN : |x− y| < δ =⇒ |fn(x)− fn(y)| < ε

holds. Use part a to prove that fn is a Cauchy sequence in C([0, 1]).


