Write the calculations and arguments that lead to your answers. Motivate your answers. You can and will have to use earlier statements, even if you failed to prove them. Calculators/communication/internet sources NOT allowed.

7 problems worth $2+1+1+1+1+\frac{3}{2}+\frac{3}{2}=9$. Your grade will be 1+T, T your total score, maximal T=9.

Problem 1. (2 points) Some basic theory needed for Problems 2,3,4,6,7.

- a) $(\frac{1}{3} \text{ point})$ Give the ε , N-definition for the sequence x_n in \mathbb{R} to be a Cauchy sequence.
- b) $(\frac{1}{3} \text{ point})$ A function $f:[0,1] \to \mathbb{R}$ is called uniformly continuous on [0,1] if

$$\forall_{\varepsilon>0}\,\exists_{\delta>0}\,\forall_{x,y\in[0,1]}\,:|x-y|<\delta\implies|f(x)-f(y)|<\varepsilon.$$

Give the logical negation of this ε , δ -statement.

c) $(\frac{1}{3} \text{ point})$ Let $f:[0,1] \to \mathbb{R}$ be a bounded function. For a partition P given by $N \in \mathbb{N}$ and points

$$0 = x_0 \le x_1 \le \dots \le x_N = 1$$

we write

$$\sum_{n=1}^{N} m_n(x_n - x_{n-1}) = \underline{S} \le \bar{S} = \sum_{n=1}^{N} M_n(x_n - x_{n-1})$$

in which

$$m_n = \inf_{x \in [x_{n-1}, x_n]} f(x), \quad M_n = \sup_{x \in [x_{n-1}, x_n]} f(x).$$

Formulate an ε -statement that characterises the integrability of f on [0,1] in terms of differences $\bar{S} - \underline{S}$.

- d) $(\frac{1}{3} \text{ point})$ Formulate the Banach Fixed Point Theorem for maps $f: [0,1] \to [0,1]$.
- e) $(\frac{1}{3} \text{ point})$ Let $f: \mathbb{R} \to \mathbb{R}$ and let R(x) = f(x) x for $x \in \mathbb{R}$. Give the ε, δ -statement on the remainder term R(x) for f to be differentiable in x = 0 with f'(0) = 1.
- f) $(\frac{1}{3} \text{ point})$ Let (a, b) be an open non-empty interval in \mathbb{R} , and let $f \in C([a, b])$ be differentiable on (a, b). Formulate the Mean Value Theorem for f on [a, b].

Problem 2. (1 point) Prove that $x = \cos x$ has a unique solution in [0, 1]. Hint: use 2 items of Problem 1. You may also use what you know about cos and sin from calculus.

Problem 3. (1 point) Let $f:[0,1]\to\mathbb{R}$ be nondecreasing. Prove that f is integrable on [0,1].

Problem 4. (1 point) Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = x + \frac{x^{\frac{4}{3}}}{1 + x^2}$$

for all $x \in \mathbb{R}$. Use the ε, δ -statement for the remainder term to show that f is differentiable in x = 0.

With everything correct so far your grade will be at least 6.

Recall C([0,1]), the space of all real valued continuous functions on [0,1], complete with respect to the metric d defined by the maximum norm:

$$d(f,g) = \max_{0 \le x \le 1} |f(x) - g(x)| = |f - g|_{max}, \quad f,g \in C([0,1]).$$

Problem 5. (1 point) Define $\Phi: C([0,1]) \to C([0,1])$ by

$$\Phi(f)(x) = 1 + \frac{1}{2} \int_0^x \frac{f(s)}{1+s} \, ds$$

for all $x \in [0,1]$ and all $f \in C([0,1])$. You don't have to prove that Φ is well defined. Prove that

$$|\Phi(f) - \Phi(g)|_{max} \le \frac{1}{2} |f - g|_{max}$$

for all $f, g \in C([0, 1])$.

Problem 6. Let p(x) be a power series of the form

$$p(x) = 1 + a_2 x^2 + a_4 x^4 + a_6 x^6 + \cdots,$$

in which the coefficients a_{2n} indexed by $n \in \mathbb{N}$ are all positive.

a) $(\frac{1}{2} \text{ point})$ Find an expression for a_{2n} , $n \in \mathbb{N}$, if it is given that

$$p''(x) = p(x)$$

for every $x \in [0, 1]$.

Write f_n for the function defined by

$$f_n(x) = 1 + a_2 x^2 + a_4 x^4 + a_6 x^6 + \dots + a_{2n} x^{2n} = 1 + \sum_{k=1}^n a_{2k} x^{2k}$$

for all $x \in [0, 1]$.

- b. $(\frac{1}{2} \text{ point})$ Show that $f_n(1)$ is a convergent sequence in \mathbb{R} . Hint: use that $f_n(1)$ is an increasing sequence and estimate a_n by a suitable power. In case you don't have a) take $a_n = \frac{1}{(2n+1)!}$.
- c. $(\frac{1}{2} \text{ point})$ Use the previous item to show that f_n is a convergent sequence in C([0,1]). Hint: for n > m write

$$f_n(x) - f_m(x) = \sum_{k=m+1}^{n} a_{2k} x^{2k}$$

and estimate to show that f_n is a Cauchy sequence with respect to the maximum norm.

Problem 7. In this exercise you will prove that every $f \in C([0,1])$ is uniformly continuous on [0,1]. To do so let $f:[0,1] \to \mathbb{R}$ be a function which is not uniformly continuous on [0,1].

- a) $(\frac{1}{2} \text{ point})$ Prove there exist $\varepsilon > 0$ and sequences x_n, y_n in [0,1] with $|f(x_n) f(y_n)| \ge \varepsilon$ and $x_n y_n \to 0$.
- b) $(\frac{1}{2} \text{ point})$ The sequence x_n has a convergent subsequence x_{n_k} with limit ξ in [0,1]. Prove that $y_{n_k} \to \xi$ as $k \to \infty$ with an ε -argument.
- c) $(\frac{1}{2} \text{ point})$ Use the definition of continuity with sequences to show that f is not continuous in ξ .

This completes the proof.