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Write the calculations and arguments that lead to your answers. Motivate your answers. You can and
will have to use earlier statements, even if you failed to prove them. Calculators/communication/internet
sources NOT allowed.

7 problems worth 2 + 1 + 1 + 1 + 1 + 3
2 + 3

2 = 9. Your grade will be 1 +T , T your total score, maximal T = 9.

Problem 1. (2 points) Some basic theory needed for Problems 2,3,4,6,7.

a) ( 1
3 point) Give the ε,N -definition for the sequence xn in IR to be a Cauchy sequence.

b) ( 1
3 point) A function f : [0, 1]→ IR is called uniformly continuous on [0, 1] if

∀ε>0 ∃δ>0 ∀x,y∈[0,1] : |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Give the logical negation of this ε, δ-statement.

c) ( 1
3 point) Let f : [0, 1]→ IR be a bounded function. For a partition P given by N ∈ IN and points

0 = x0 ≤ x1 ≤ · · · ≤ xN = 1

we write
N∑
n=1

mn(xn − xn−1) = S ≤ S̄ =

N∑
n=1

Mn(xn − xn−1)

in which
mn = inf

x∈[xn−1,xn]
f(x), Mn = sup

x∈[xn−1,xn]

f(x).

Formulate an ε-statement that characterises the integrability of f on [0, 1] in terms of differences S̄−S.

d) ( 1
3 point) Formulate the Banach Fixed Point Theorem for maps f : [0, 1]→ [0, 1].

e) ( 1
3 point) Let f : IR→ IR and let R(x) = f(x)− x for x ∈ IR.

Give the ε, δ-statement on the remainder term R(x) for f to be differentiable in x = 0 with f ′(0) = 1.

f) ( 1
3 point) Let (a, b) be an open non-empty interval in IR, and let f ∈ C([a, b]) be differentiable on (a, b).

Formulate the Mean Value Theorem for f on [a, b].

Problem 2. (1 point) Prove that x = cosx has a unique solution in [0, 1]. Hint: use 2 items of Problem 1.
You may also use what you know about cos and sin from calculus.

Problem 3. (1 point) Let f : [0, 1]→ IR be nondecreasing. Prove that f is integrable on [0, 1].

Problem 4. (1 point) Define f : IR→ IR by

f(x) = x+
x

4
3

1 + x2

for all x ∈ IR. Use the ε, δ-statement for the remainder term to show that f is differentiable in x = 0.

With everything correct so far your grade will be at least 6.
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Recall C([0, 1]), the space of all real valued continuous functions on [0, 1], complete with respect to the metric
d defined by the maximum norm:

d(f, g) = max
0≤x≤1

|f(x)− g(x)| = |f − g|max , f, g ∈ C([0, 1]).

Problem 5. (1 point) Define Φ : C([0, 1])→ C([0, 1]) by

Φ(f)(x) = 1 +
1

2

∫ x

0

f(s)

1 + s
ds

for all x ∈ [0, 1] and all f ∈ C([0, 1]). You don’t have to prove that Φ is well defined. Prove that

|Φ(f)− Φ(g)|max ≤
1

2
|f − g|max

for all f, g ∈ C([0, 1]).

Problem 6. Let p(x) be a power series of the form

p(x) = 1 + a2x
2 + a4x

4 + a6x
6 + · · · ,

in which the coefficients a2n indexed by n ∈ IN are all positive.

a) ( 1
2 point) Find an expression for a2n, n ∈ IN, if it is given that

p′′(x) = p(x)

for every x ∈ [0, 1].

Write fn for the function defined by

fn(x) = 1 + a2x
2 + a4x

4 + a6x
6 + · · ·+ a2nx

2n = 1 +

n∑
k=1

a2kx
2k

for all x ∈ [0, 1].

b. ( 1
2 point) Show that fn(1) is a convergent sequence in IR.

Hint: use that fn(1) is an increasing sequence and estimate an by a suitable power.

In case you don’t have a) take an = 1
(2n+1)! .

c. ( 1
2 point) Use the previous item to show that fn is a convergent sequence in C([0, 1]).

Hint: for n > m write

fn(x)− fm(x) =

n∑
k=m+1

a2kx
2k

and estimate to show that fn is a Cauchy sequence with respect to the maximum norm.

Problem 7. In this exercise you will prove that every f ∈ C([0, 1]) is uniformly continuous on [0, 1]. To do
so let f : [0, 1]→ IR be a function which is not uniformly continuous on [0, 1].

a) ( 1
2 point) Prove there exist ε > 0 and sequences xn, yn in [0, 1] with |f(xn)−f(yn)| ≥ ε and xn−yn → 0.

b) ( 1
2 point) The sequence xn has a convergent subsequence xnk

with limit ξ in [0, 1].

Prove that ynk
→ ξ as k →∞ with an ε-argument.

c) ( 1
2 point) Use the definition of continuity with sequences to show that f is not continuous in ξ.

This completes the proof.


