VU Amsterdam	Mathematical Analysis (XB ₋ 0009)
Faculty of Sciences	Solutions to Final Exam 2021
Gabriele Benedetti	

Solution to Problem 1.

- a) A sequence is Cauchy if for all $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have $|x_n x_m| < \varepsilon$.
- b) The logical negation to uniform continuity is:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0, \ \exists x, y \in [0, 1], \ |x - y| < \delta \text{ and } |f(x) - f(y)| \ge \varepsilon_0.$$

- c) The function f is integrable if for all $\varepsilon > 0$ there is a partition P such that $\overline{S} \underline{S} < \varepsilon$.
- d) If a function $f: [0,1] \to [0,1]$ is a contraction, there exists a unique $\alpha \in [0,1]$ such that $f(\alpha) = \alpha$. Addendum: Given any sequence (x_n) defined by $x_0 \in [0,1]$ and $x_{n+1} = f(x_n)$, we have $|\alpha x_n| \le \frac{r^n}{1-r} |x_1 x_0|$ for all n, where r is the contraction factor of f.
- e) (I think here the assumption f(0) = 0 is missing). Let R(x) = f(x) x. Saying that f(0) = 0 and f'(0) = 1 is the same as saying that $R(x) = \rho(x)x$ where ρ is continuous at x = 0 and $\rho(0) = 0$. This is equivalent to saying that for all $\varepsilon > 0$ there is $\delta > 0$ such that if $|x| < \delta$, then $|R(x)| < \varepsilon |x|$.
- f) If f is continuous on [a, b] and differentiable on (a, b), then there is $c \in (a, b)$ such that $\frac{f(b)-f(a)}{b-a}=f'(c)$.

Solution to Problem 2.

Consider the function $f:[0,1]\to [0,1]$ such that $f(x)=\cos x$ for all $x\in [0,1]$. The target of the function is indeed correct since $|\cos x|\le 1$ and $\cos(x)\ge 0$ for all $x\in [0,\frac{\pi}{2}]\supset [0,1]$. By the Banach contraction principle, the desired result follows by showing that f is a contraction. If $x,y\in [0,1]$ with x< y, then |f(x)-f(y)|=|f'(c)||x-y| for some $c\in (x,y)$ as follows from the mean-value theorem since f is differentiable. On the other hand, $|f'(c)|=|-\sin(c)|=|\sin(c)|=\sin c\le \sin 1$ where we have used that $\sin i$ nonnegative and increasing in the interval [0,1]. Thus, $|f(x)-f(y)|\le r|x-y|$ with $r=\sin(1)$ since $1\in [0,\frac{\pi}{2})$ we see that $\sin(1)<1$ and hence f is a contraction.

Solution to Problem 3.

This was proved for Assignment 5 in year 2023.

Solution to Problem 4.

We have $R(x) = f(x) - x = \frac{x^{\frac{4}{3}}}{1+x^2}$. Therefore, $|R(x)| = \left|\frac{x^{\frac{1}{3}}}{1+x^2}\right| |x|$. Given $\varepsilon > 0$, let $\delta > 0$ to be found below and estimate for all $x \in \mathbb{R}$ with $|x| < \delta$:

$$\left| \frac{x^{\frac{1}{3}}}{1+x^2} \right| \le \frac{|x|^{\frac{1}{3}}}{1+0} < \delta^{\frac{1}{3}}.$$

If δ is such that $\delta^{\frac{1}{3}} = \varepsilon$, then δ is a suitable response to ε . This means $\delta := \varepsilon^3$.

Solution to Problem 5.

Let $f, g \in C[0, 1]$ and let $x \in [0, 1]$. Then,

$$\begin{split} \left| \Phi(f)(x) - \Phi(g)(x) \right| &= \left| 1 + \frac{1}{2} \int_0^x \frac{f(t)}{1+t} \mathrm{d}t - \left(1 + \frac{1}{2} \int_0^x \frac{g(t)}{1+t} \mathrm{d}t \right) \right| = \frac{1}{2} \left| \int_0^x \frac{f(t) - g(t)}{1+t} \mathrm{d}t \right| \\ &\leq \frac{1}{2} \int_0^x \frac{|f(t) - g(t)|}{1+t} \mathrm{d}t \\ &\leq \frac{1}{2} \int_0^x |f(t) - g(t)| \mathrm{d}t \\ &\leq \frac{1}{2} \int_0^x |f - g|_{\max} \mathrm{d}t \\ &= \frac{1}{2} x |f - g|_{\max} \\ &\leq \frac{1}{2} |f - g|_{\max} \,, \end{split}$$

where we used linearity and triangular inequality of the integral, monotonicity of the integral combined with $\frac{1}{1+t} \leq 1$ and $|f(t)-g(t)| \leq |f-g|_{\max}$ for all $t \in [0,1]$, the integral of a constant and the fact that $x \leq 1$. Since this is true for all x, then $|\Phi(f)-\Phi(g)|_{\max} = \max_{0 \leq x \leq 1} |\Phi(f)(x)-\Phi(g)(x)| \leq \frac{1}{2} |f-g|_{\max}$.

Solution to Problem 6.

This problem is not relevant for the course of 2023.

Solution to Problem 7.

This problem was proved as a Theorem in Lecture 8 of 2023.