Write the calculations and arguments that lead to your answers. Motivate your answers. You can use earlier statements, even if you failed to prove them. Calculators/communication/internet sources NOT allowed.

Every item below is $\frac{1}{2}$ point, except 2a, 3c, 5a, which are 1 point. Your grade will be 1+T, T your total score, maximal T=9.

Problem 1. Some basic theory needed for the next exercises.

- a) $(\frac{1}{2} \text{ point})$ Formulate the Archimedean Principle.
- b) $(\frac{1}{2} \text{ point})$ Give the definition of a convergent sequence.
- c) $(\frac{1}{2} \text{ point})$ Formulate the Banach Fixed Point Theorem for real valued functions of a real variable.

Problem 2. Consider the sequence x_n indexed by $n \in \mathbb{N}$ and defined by

$$x_n = \frac{n}{n^2 + 1}.$$

- a) (1 point) Prove that 0 is the largest lower bound for the sequence x_n .
- b) $(\frac{1}{2} \text{ point})$ Prove that x_n is convergent.

Answers:

a) Clear 0 is lower bound for the sequence. Let $m \ge 0$ be the largest lower bound and suppose that m > 0. To establish a contradiction we look for an $n \in \mathbb{N}$ with $x_n < m$. So we need

$$\frac{n}{n^2 + 1} < m$$

Use

$$\frac{n}{n^2+1}<\frac{n}{n^2}=\frac{1}{n}$$

and invoke the Archimedean Principle for the existence of $n \in \mathbb{N}$ with

$$\frac{1}{n} < m$$
.

Then

$$x_n = \frac{n}{n^2 + 1} < \frac{1}{n} < m,$$

contradicting the assumption that m is a lower bound.

b) We use the same estimate for x_n . Let $\varepsilon > 0$ and invoke the Archimedean Principle for the existence of $N \in \mathbb{N}$ with

$$\frac{1}{N} < \varepsilon$$
.

For all $n \geq N$ it then holds that

$$|x_n - 0| = \frac{n}{n^2 + 1} < \frac{1}{n} \le \frac{1}{N} < \varepsilon,$$

which completes the proof.

Alternatively, show that x_n is decreasing and use the first part.

Problem 3. Let $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ and let $f: \mathbb{R}^+ \to \mathbb{R}^+$ be defined by

$$f(x) = x + \frac{1}{x}$$

You can use the continuity of f only after the first question.

Let $\xi \in \mathbb{R}^+$ and let $x_n \in \mathbb{R}^+$ be a sequence indexed by $n \in \mathbb{N}$ with $x_n \to \xi$ as $n \to \infty$.

a) $(\frac{1}{2} \text{ point})$ Use the ε -definition to prove that $f(x_n) \to f(\xi)$ as $n \to \infty$.

Let $A = \{f(x) : x \in \mathbb{R}^+\}$ be the image of \mathbb{R}^+ under f.

Then A is non-empty and bounded from below by 0.

Therefore there exists a largest lower bound $m \geq 0$ for A.

b) $(\frac{1}{2} \text{ point})$ Prove that there exists a sequence $y_n \in A$ with $y_n \to m$ as $n \to \infty$.

By definition of A we have for every n that $y_n = f(x_n)$ for some $x_n \in \mathbb{R}^+$.

So with the sequence y_n we also have a sequence x_n .

Like any sequence of real numbers, x_n has a monotone subsequence x_{n_k} , indexed by $k \in \mathbb{N}$.

c) (1 point) Show that $x_{n_k} \to \bar{x}$ for some $\bar{x} \in \mathbb{R}^+$ as $k \to \infty$.

Hint: distinguish between x_{n_k} non-decreasing and x_{n_k} non-increasing.

Define x_n by $x_0 = 1$ and $x_n = f(x_{n-1})$ for all $n \in \mathbb{N}$. Then x_n is a strictly increasing sequence.

d) $(\frac{1}{2} \text{ point})$ Is x_n a convergent sequence?

Hint: use the continuity of f.

Answers:

a) NB You are actually being asked to prove that f is continuous in ξ using the definition of continuity with limits of sequences.

Let $\varepsilon > 0$. Then you need an estimate of the form

$$|f(x_n) - f(\xi)| = |x_n + \frac{1}{x_n} - \xi - \frac{1}{\xi}| < \varepsilon$$

for $n \geq N$, N to be found using the ε -characterisation of $x_n \to \xi$.

Since

$$|x + \frac{1}{x} - \xi - \frac{1}{\xi}| = |x - \xi + \frac{1}{x} - \frac{1}{\xi}| \le |x - \xi| + |\frac{1}{x} - \frac{1}{\xi}| \le |x - \xi| + \frac{|x - \xi|}{x\xi} = (1 + \frac{1}{x\xi})|x - \xi|$$

for x > 0 we have

$$|f(x_n) - f(\xi)| < (1 + \frac{1}{x_n \xi}) |x_n - \xi| < (1 + \frac{1}{x_n \xi}) \varepsilon$$

for all $n \geq N$, N provided by the ε -characterisation of $x_n \to \xi$. This N depends on $\varepsilon > 0$.

We next look for a bound on the prefactor

$$1 + \frac{1}{x_n \xi}$$

and use the ε -characterisation of $x_n \to \xi$ with $\varepsilon = \frac{\xi}{2}$ to obtain N_1 such that $|x_n - \xi| < \frac{\xi}{2}$ for all $n \ge N_1$. In particular $x_n > \frac{\xi}{2}$ and

$$1 + \frac{1}{x_n \xi} < 1 + \frac{2}{\xi^2}.$$

It follows for $n \ge \max(N, N_1)$ that

$$|f(x_n) - f(\xi)| < (1 + \frac{2}{\xi^2}) \varepsilon.$$

This proves the statement that

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N : \quad |f(x_n) - f(\xi)| < (1 + \frac{2}{\xi^2}) \varepsilon.$$

Now redo the argument starting with

$$\tilde{\varepsilon} = \frac{\varepsilon}{1 + \frac{2}{\varepsilon^2}}$$

to conclude.

- b) Let $n \in \mathbb{N}$. Since m is the largest lower bound for A the number $m + \frac{1}{n}$ is not a lower bound and thus there exists $y_n \in A$ such that $y_n < m + \frac{1}{n}$. But then $m \le y_n < m + \frac{1}{n}$. Thus $|y_n m| < \frac{1}{n}$ and as in 2b this implies that $y_n \to m$ as $n \to \infty$.
- c) If x_{n_k} is non-decreasing then it may be bounded or not bounded from above. If it is then it converges to it lowest upper bound as $k \to \infty$.

It it is not bounded then $y_{n_k} = f(x_{n_k}) > x_{n_k}$ is also unbounded, contradicting $y_{n_k} \to m$ as $k \to \infty$.

If x_{n_k} is non-increasing then it has its largest lower bound as limit. Call that limit \bar{x} . It remains to show that $\bar{x} > 0$. If not then it must be that $\bar{x} = 0$ and then

$$y_{n_k} = f(x_{n_k}) > \frac{1}{x_{n_k}}$$

NB Not asked is: call that limit \bar{x} . By a) it follows that $y_{n_k} = f(x_{n_k}) \to f(\bar{x})$ as $k \to \infty$. But by b) $y_{n_k} \to f(\bar{x})$. It follows that $f(\bar{x}) = m$.

d) You don't have to check that x_n is increasing. Can it be bounded? If so it has a limit $\bar{x} > 0$ and it follows that $x_n \to \bar{x}$ and thereby $f(x_n) \to f(\bar{x})$. But $f(x_n) = x_{n+1} \to \bar{x}$ so $\bar{x} = f(\bar{x})$. For this f this would say that

$$\bar{x} = \bar{x} + \frac{1}{\bar{x}}$$

which is a contradiction.

Problem 4. Let $f: \mathbb{R}^+ \to \mathbb{R}^+$ be defined by

$$f(x) = \frac{x}{3} + \frac{1}{x}$$

a) $(\frac{1}{2} \text{ point})$ For which a > 0 is f contractive on $[a, \infty)$?

For such a and $x \ge a > 0$ we have

$$f(x) \ge \frac{a}{3} + \frac{1}{x},$$

so $f(x) \ge a$ provided

$$\frac{a}{3} + \frac{1}{x} \ge a.$$

Let b be the largest x for which this latter inequality holds.

- b) $(\frac{1}{2} \text{ point})$ For which a is f a map from [a, b] to itself? Hint: Express b in a and estimate both terms in f(x) from above.
- c) $(\frac{1}{2} \text{ point})$ Prove that f(x) = x has a positive solution x.

Anwers:

a) We have

$$f(x) - f(y) = (\frac{1}{3} - \frac{1}{xy})(x - y)$$

and

$$(\frac{1}{3} - \frac{1}{a^2}) \le (\frac{1}{3} - \frac{1}{xy}) < \frac{1}{3}$$

Thus f is contractive if

$$\frac{1}{3} - \frac{1}{a^2} \ge -1,$$

which is equivalent to $a^2 > \frac{3}{4}$.

b) Compute $b = \frac{3}{2a}$.

For all $x \geq a$ we then have

$$f(x) \ge \frac{a}{3} + \frac{1}{x} \ge \frac{a}{3} + \frac{1}{b} = a,$$

and also

$$f(x) = \frac{x}{3} + \frac{1}{x} \le \frac{b}{3} + \frac{1}{a} = \frac{1}{2a} + \frac{1}{a} = b.$$

So $a \le f(x) \le b$ for all $x \in [a, b]$.

c) Choose a as in a) such that b>a. The latter requires $\frac{3}{2a}>a$, i.e. $a^2<\frac{3}{2}$. With $a^2>\frac{3}{4}$ in a) it follows that f is a contraction from $[a,\frac{3}{2a}]$ to itself if $\frac{3}{4}< a^2<\frac{3}{2}$. Invoke 1c.

Problem 5. Let $f_n: \mathbb{R}^+ \to \mathbb{R}^+$ be defined by

$$f_n(x) = \frac{x}{n} + \frac{1}{x}$$

- a) (1 point) Show that the sequence f_n is uniformly convergent on (0,1].
- b) $(\frac{1}{2} \text{ point})$ Is the sequence f_n uniformly convergent on \mathbb{R}^+ ? Explain!
- c) $(\frac{1}{2} \text{ point})$ Let x_n be the solution of $f_n(x) = x$. Is the sequence x_n convergent? If yes, use your calculus skills to compute the limit.

Answers

a) The pointwise limit is f(x) = x. For uniform convergence estimate

$$|f_n(x) - f(x)| = |\frac{x}{n}| \le \frac{1}{n}.$$

So given $\varepsilon > 0$ choose $N \in \mathbb{N}$ with $\frac{1}{N} < \varepsilon$, then for all $n \geq N$

$$|f_n(x) - f(x)| = \left|\frac{x}{n}\right| \le \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

b) There's now way to get

$$|f_n(x) - f(x)| = \left|\frac{x}{n}\right| < \varepsilon$$

for all x > 0 simultaneously. Not for any $\varepsilon > 0$ and $n \in \mathbb{N}$. Just take $x = n\varepsilon$ to see why. So no uniform convergence on \mathbb{R}^+ .

c) Just solve the equation to find

$$x_n = \sqrt{\frac{n}{n-1}} \to 1$$

as $n \to \infty$.