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Write the calculations and arguments that lead to your answers. Motivate your answers. You can use earlier
statements, even if you failed to prove them. Calculators/communication/internet sources NOT allowed.

Every item below is 1
2 point, except 2a, 3c, 5a, which are 1 point.

Your grade will be 1 + T , T your total score, maximal T = 9.

Problem 1. Some basic theory needed for the next exercises.

a) ( 1
2 point) Formulate the Archimedean Principle.

b) ( 1
2 point) Give the definition of a convergent sequence.

c) ( 1
2 point) Formulate the Banach Fixed Point Theorem for real valued functions of a real variable.

Problem 2. Consider the sequence xn indexed by n ∈ IN and defined by

xn =
n

n2 + 1
.

a) (1 point) Prove that 0 is the largest lower bound for the sequence xn.

b) ( 1
2 point) Prove that xn is convergent.

Answers:

a) Clear 0 is lower bound for the sequence. Let m ≥ 0 be the largest lower bound and suppose that
m > 0. To establish a contradiction we look for an n ∈ IN with xn < m. So we need

n

n2 + 1
< m

Use
n

n2 + 1
<

n

n2
=

1

n

and invoke the Archimedean Principle for the existence of n ∈ IN with

1

n
< m.

Then

xn =
n

n2 + 1
<

1

n
< m,

contradicting the assumption that m is a lower bound.

b) We use the same estimate for xn. Let ε > 0 and invoke the Archimedean Principle for the existence of
N ∈ IN with

1

N
< ε.

For all n ≥ N it then holds that

|xn − 0| = n

n2 + 1
<

1

n
≤ 1

N
< ε,

which completes the proof.

Alternatively, show that xn is decreasing and use the first part.
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Problem 3. Let IR+ = {x ∈ IR : x > 0} and let f : IR+ → IR+ be defined by

f(x) = x+
1

x

You can use the continuity of f only after the first question.

Let ξ ∈ IR+ and let xn ∈ IR+ be a sequence indexed by n ∈ IN with xn → ξ as n→∞.

a) ( 1
2 point) Use the ε-definition to prove that f(xn)→ f(ξ) as n→∞.

Let A = {f(x) : x ∈ IR+} be the image of IR+ under f .

Then A is non-empty and bounded from below by 0.

Therefore there exists a largest lower bound m ≥ 0 for A.

b) ( 1
2 point) Prove that there exists a sequence yn ∈ A with yn → m as n→∞.

By definition of A we have for every n that yn = f(xn) for some xn ∈ IR+.

So with the sequence yn we also have a sequence xn.

Like any sequence of real numbers, xn has a monotone subsequence xnk
, indexed by k ∈ IN.

c) (1 point) Show that xnk
→ x̄ for some x̄ ∈ IR+ as k →∞.

Hint: distinguish between xnk
non-decreasing and xnk

non-increasing.

Define xn by x0 = 1 and xn = f(xn−1) for all n ∈ IN. Then xn is a strictly increasing sequence.

d) ( 1
2 point) Is xn a convergent sequence?

Hint: use the continuity of f .

Answers:

a) NB You are actually being asked to prove that f is continuous in ξ using the definition of continuity
with limits of sequences.

Let ε > 0. Then you need an estimate of the form

|f(xn)− f(ξ)| = |xn +
1

xn
− ξ − 1

ξ
| < ε

for n ≥ N , N to be found using the ε-characterisation of xn → ξ.

Since

|x+
1

x
− ξ − 1

ξ
| = |x− ξ +

1

x
− 1

ξ
| ≤ |x− ξ|+ | 1

x
− 1

ξ
| ≤ |x− ξ|+ |x− ξ|

xξ
= (1 +

1

xξ
) |x− ξ|

for x > 0 we have

|f(xn)− f(ξ)| < (1 +
1

xnξ
) |xn − ξ| < (1 +

1

xnξ
) ε

for all n ≥ N , N provided by the ε-characterisation of xn → ξ. This N depends on ε > 0.

We next look for a bound on the prefactor

1 +
1

xnξ

and use the ε-characterisation of xn → ξ with ε = ξ
2 to obtain N1 such that |xn−ξ| < ξ

2 for all n ≥ N1.

In particular xn >
ξ
2 and

1 +
1

xnξ
< 1 +

2

ξ2
.

It follows for n ≥ max(N,N1) that

|f(xn)− f(ξ)| < (1 +
2

ξ2
) ε.
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This proves the statement that

∀ε > 0 ∃N ∈ IN ∀n ≥ N : |f(xn)− f(ξ)| < (1 +
2

ξ2
) ε.

Now redo the argument starting with

ε̃ =
ε

1 + 2
ξ2

to conclude.

b) Let n ∈ IN. Since m is the largest lower bound for A the number m+ 1
n is not a lower bound and thus

there exists yn ∈ A such that yn < m+ 1
n . But then m ≤ yn < m+ 1

n . Thus |yn −m| < 1
n and as in

2b this implies that yn → m as n→∞.

c) If xnk
is non-decreasing then it may be bounded or not bounded from above. If it is then it converges

to it lowest upper bound as k →∞.

It it is not bounded then ynk
= f(xnk

) > xnk
is also unbounded, contradicting ynk

→ m as k →∞.

If xnk
is non-increasing then it has its largest lower bound as limit. Call that limit x̄. It remains to

show that x̄ > 0. If not then it must be that x̄ = 0 and then

ynk
= f(xnk

) >
1

xnk

NB Not asked is: call that limit x̄. By a) it follows that ynk
= f(xnk

) → f(x̄) as k → ∞. But by b)
ynk
→ f(x̄). It follows that f(x̄) = m.

d) You don’t have to check that xn is increasing. Can it be bounded? If so it has a limit x̄ > 0 and it
follows that xn → x̄ and thereby f(xn) → f(x̄). But f(xn) = xn+1 → x̄ so x̄ = f(x̄). For this f this
would say that

x̄ = x̄+
1

x̄

which is a contradiction.
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Problem 4. Let f : IR+ → IR+ be defined by

f(x) =
x

3
+

1

x

a) ( 1
2 point) For which a > 0 is f contractive on [a,∞)?

For such a and x ≥ a > 0 we have

f(x) ≥ a

3
+

1

x
,

so f(x) ≥ a provided
a

3
+

1

x
≥ a.

Let b be the largest x for which this latter inequality holds.

b) ( 1
2 point) For which a is f a map from [a, b] to itself?

Hint: Express b in a and estimate both terms in f(x) from above.

c) ( 1
2 point) Prove that f(x) = x has a positive solution x.

Anwers:

a) We have

f(x)− f(y) = (
1

3
− 1

xy
)(x− y)

and

(
1

3
− 1

a2
) ≤ (

1

3
− 1

xy
) <

1

3

Thus f is contractive if
1

3
− 1

a2
≥ −1,

which is equivalent to a2 > 3
4 .

b) Compute b = 3
2a .

For all x ≥ a we then have

f(x) ≥ a

3
+

1

x
≥ a

3
+

1

b
= a,

and also

f(x) =
x

3
+

1

x
≤ b

3
+

1

a
=

1

2a
+

1

a
= b.

So a ≤ f(x) ≤ b for all x ∈ [a, b].

c) Choose a as in a) such that b > a. The latter requires 3
2a > a, i.e. a2 < 3

2 . With a2 > 3
4 in a) it follows

that f is a contraction from [a, 3
2a ] to itself if 3

4 < a2 < 3
2 . Invoke 1c.
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Problem 5. Let fn : IR+ → IR+ be defined by

fn(x) =
x

n
+

1

x

a) (1 point) Show that the sequence fn is uniformly convergent on (0, 1].

b) ( 1
2 point) Is the sequence fn uniformly convergent on IR+? Explain!

c) ( 1
2 point) Let xn be the solution of fn(x) = x. Is the sequence xn convergent?

If yes, use your calculus skills to compute the limit.

Answers

a) The pointwise limit is f(x) = x. For uniform convergence estimate

|fn(x)− f(x)| = |x
n
| ≤ 1

n
.

So given ε > 0 choose N ∈ IN with 1
N < ε, then for all n ≥ N

|fn(x)− f(x)| = |x
n
| ≤ 1

n
≤ 1

N
< ε.

b) There’s now way to get

|fn(x)− f(x)| = |x
n
| < ε

for all x > 0 simultaneously. Not for any ε > 0 and n ∈ IN. Just take x = nε to see why.

So no uniform convergence on IR+.

c) Just solve the equation to find

xn =

√
n

n− 1
→ 1

as n→∞.


