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Write the calculations and arguments that lead to your answers. Motivate your answers (refer to theorems
used). You can use earlier statements, even if you failed to prove them. Calculators/communication/internet
sources NOT allowed, except the course notes, use them! Your grade will be 1 + T

4 , T your total score.

Problem 1. For a + b + c = 3 + 3 + 3 = 9 points you have to give your answers in this exercise with
epsilon arguments. Let F : IR→ IR be defined by

F (x) =
x3

1− x3
for all x 6= 1 and F (1) = −1.

a) Prove that F is discontinuous in x = 1.

b) For every n ∈ IN we define fn : (0, 1)→ IR by

fn(x) = F (
x

n
) for all x ∈ (0, 1).

Prove that fn(x) is a convergent sequence for every x ∈ (0, 1).

c) Prove that the convergence is not uniform on (−1, 1).

Problem 2. Let f : IR→ IR be defined by

f(x) = 2x +
1

3
x3.

This f can next earn you

a + b + c + d = 2 + 1 + 2 + 4 = 9 points

a) Use epsilon-delta arguments for the appropriate remainder term to show f is differentiable in x = 0.

b) Now consider for y ∈ IR fixed the equation f(x) = y and the scheme xn = xn−1 +f ′(0)−1(y−f(xn−1))
to solve f(x) = y. Verify that

xn =
1

2
y − 1

6
x3
n−1. (1)

c) Starting from x0 = 0 the scheme (1) defines a sequence xn. Suppose that for some n ∈ IN it holds that

|xn−1| ≤ 1 and |xn| ≤ 1 .

Use (1) to show that

|xn+1 − xn| ≤
1

2
|xn − xn−1| . (2)

d) The sequence xn depends on y, and thereby defines a sequence of functions gn by setting gn(y) = xn.

Show there exists r > 0 such that gn is a uniform Cauchy sequence in C([−r, r]).
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Problem 3. For a + b + c + d = 2 + 2 + 2 + 2 = 8 points consider solutions of

f ′′(x) +
1

x
f ′(x) + f(x) = 0,

a differential equation posed for x > 0 first here.

a) Suppose that
f(x) = a0 + a2x

2 + a4x
4 + a6x

6 + a8x
8 + · · ·

is a power series solution defined for all x in some interval (0, r). Show that

a2n = −a2n−2
(2n)2

for all ∈ IN.

b) Fix x > 0. Use a) and an estimate for n sufficiently large to establish convergence of the series.

c) Let f be any solution of the differential equation defined on an open interval contained in IR+ and let

E(x) = f ′(x)2 + f(x)2.

Show that E′(x) ≤ 0 on that interval. Hint: use the differential equation and not the power series
expansion of its solution when you evaluate E′(x).

d) By b) the power series in a) is a solution that satisfies f(x)→ 1 and f ′(x)→ 0 as x→ 0.

Show there are no other solutions on IR+ with this property. Hint: if g(x) is another such solution
then v(x) = f(x)− g(x) is also a solution of the differential equation. Apply c) to v.

Problem 4. For more than a + b + c + d + e = 2 + 2 + 2 + 2 + 2 = 10 points we consider the
differential equation f ′(x) = 1 + f(x)2 with initial value f(0) = 0.

a) Let r > 0 and suppose that f ∈ C([0, r]) is a solution. Integrate the differential equation to show that

f(x) =

∫ x

0

(1 + f(s)2) ds for all x ∈ [0, r]. (3)

b) Denote the right hand side of (3) by (Φ(f))(x).

Explain why this defines a map Φ : C([0, r])→ C([0, r]).

c) Voor f ∈ C([0, r]) we write
|f |

r
= max

x∈[0,r]
|f(x)|

for the maximum norm of f . Show that

|Φ(f)− Φ(g)|
r
≤ r (|f |

r
+ |g|

r
) |f − g|

r

for every f, g ∈ C([0, r]).

d) Let r,R > 0 and
A = ArR = {f ∈ C([0, r]) : |f |

r
≤ R}.

Show that
|Φ(f)|

r
≤ r (1 + R2)

for every f ∈ A.

e) Show there exist r > 0 and R > 0 such that Φ is a contraction on A.

f) Bonus (2 points): describe the set of all r > 0 and R > 0 for which Φ is a contraction on A.


