Mathematical Analysis, open course notes take home resit 3 hours

First examiner: Joost Hulshof Second examiner: Bob Rink

Write the calculations and arguments that lead to your answers. *Motivate* your answers (refer to theorems used). You can use *earlier* statements, even if you failed to prove them. Calculators/communication/internet sources NOT allowed, except the course notes, use them! Your grade will be $1 + \frac{T}{4}$, T your total score.

Problem 1. For a + b + c = 3 + 3 + 3 = 9 points you have to give your answers in this exercise with epsilon arguments. Let $F : \mathbb{R} \to \mathbb{R}$ be defined by

$$F(x) = \frac{x^3}{1 - x^3} \quad \text{for all} \quad x \neq 1 \quad \text{and} \quad F(1) = -1.$$

- a) Prove that F is discontinuous in x = 1.
- b) For every $n \in \mathbb{N}$ we define $f_n : (0,1) \to \mathbb{R}$ by

$$f_n(x) = F(\frac{x}{n})$$
 for all $x \in (0,1)$.

Prove that $f_n(x)$ is a convergent sequence for every $x \in (0,1)$.

c) Prove that the convergence is not uniform on (-1,1).

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = 2x + \frac{1}{3}x^3.$$

This f can next earn you

$$a + b + c + d = 2 + 1 + 2 + 4 = 9$$
 points

- a) Use epsilon-delta arguments for the appropriate remainder term to show f is differentiable in x = 0.
- b) Now consider for $y \in \mathbb{R}$ fixed the equation f(x) = y and the scheme $x_n = x_{n-1} + f'(0)^{-1}(y f(x_{n-1}))$ to solve f(x) = y. Verify that

$$x_n = \frac{1}{2}y - \frac{1}{6}x_{n-1}^3. \tag{1}$$

c) Starting from $x_0 = 0$ the scheme (1) defines a sequence x_n . Suppose that for some $n \in \mathbb{N}$ it holds that

$$|x_{n-1}| \le 1$$
 and $|x_n| \le 1$.

Use (1) to show that

$$|x_{n+1} - x_n| \le \frac{1}{2} |x_n - x_{n-1}|. \tag{2}$$

d) The sequence x_n depends on y, and thereby defines a sequence of functions g_n by setting $g_n(y) = x_n$. Show there exists r > 0 such that g_n is a uniform Cauchy sequence in C([-r, r]). Problem 3. For a + b + c + d = 2 + 2 + 2 + 2 = 8 points consider solutions of

$$f''(x) + \frac{1}{x}f'(x) + f(x) = 0,$$

a differential equation posed for x > 0 first here.

a) Suppose that

$$f(x) = a_0 + a_2 x^2 + a_4 x^4 + a_6 x^6 + a_8 x^8 + \cdots$$

is a power series solution defined for all x in some interval (0, r). Show that

$$a_{2n} = -\frac{a_{2n-2}}{(2n)^2}$$

for all $\in \mathbb{N}$.

- b) Fix x > 0. Use a) and an estimate for n sufficiently large to establish convergence of the series.
- c) Let f be any solution of the differential equation defined on an open interval contained in \mathbb{R}_+ and let

$$E(x) = f'(x)^2 + f(x)^2.$$

Show that $E'(x) \leq 0$ on that interval. Hint: use the differential equation and not the power series expansion of its solution when you evaluate E'(x).

d) By b) the power series in a) is a solution that satisfies $f(x) \to 1$ and $f'(x) \to 0$ as $x \to 0$. Show there are no other solutions on \mathbb{R}_+ with this property. Hint: if g(x) is another such solution then v(x) = f(x) - g(x) is also a solution of the differential equation. Apply c) to v.

Problem 4. For more than $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} + \mathbf{e} = \mathbf{2} + \mathbf{2} + \mathbf{2} + \mathbf{2} + \mathbf{2} = \mathbf{10}$ points we consider the differential equation $f'(x) = 1 + f(x)^2$ with initial value f(0) = 0.

a) Let r>0 and suppose that $f\in C([0,r])$ is a solution. Integrate the differential equation to show that

$$f(x) = \int_0^x (1 + f(s)^2) ds$$
 for all $x \in [0, r]$. (3)

b) Denote the right hand side of (3) by $(\Phi(f))(x)$.

Explain why this defines a map $\Phi: C([0,r]) \to C([0,r])$.

c) Voor $f \in C([0, r])$ we write

$$|f|_r = \max_{x \in [0,r]} |f(x)|$$

for the maximum norm of f. Show that

$$|\Phi(f) - \Phi(g)|_{r} \le r(|f|_{r} + |g|_{r})|f - g|_{r}$$

for every $f, g \in C([0, r])$.

d) Let r, R > 0 and

$$A = A_{rR} = \{ f \in C([0, r]) : |f|_{r} < R \}.$$

Show that

$$|\Phi(f)|_r \leq \, r \, (1+R^2)$$

for every $f \in A$.

- e) Show there exist r > 0 and R > 0 such that Φ is a contraction on A.
- f) Bonus (2 points): describe the set of all r > 0 and R > 0 for which Φ is a contraction on A.