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Write the calculations and arguments that lead to your answers. Motivate your answers (refer to theorems
used). You can use earlier statements, even if you failed to prove them. Calculators/communication/internet
sources NOT allowed, except the course notes, use them! Your grade will be 1 + T

4 , T your total score.

Problem 1. For a + b + c = 3 + 3 + 3 = 9 points you have to give your answers in this exercise with
epsilon arguments. Let F : IR→ IR be defined by

F (x) =
x3

1− x3
for all x 6= 1 and F (1) = −1.

a) Prove that F is discontinuous in x = 1.

Answer. I reason as in the previous exam. We have

F (x)− F (1) =
x3

1− x3
+ 1 =

1

1− x3

and see that for x close to 1 the denominator is small. Let’s try to make it smaller than 1
2 to obtain

that for ε = 2 no δ > 0 can be found with

(∆) |x− 1| < δ =⇒ |F (x)− F (1)| < 2.

So the x that you choose will depend on δ. We note that

|F (x)− F (1)| ≥ 2 ⇐⇒ |1− x3| ≤ 1

2
⇐⇒ |1− x3| ≤ 1

2︸ ︷︷ ︸ ⇐⇒ −1

2
≤ x3 − 1 ≤ 1

2
⇐⇒ 1

2
≤ x3 ≤ 3

2
,

and this certainly holds if for instance 9
10 ≤ x ≤

11
10 since then

1

2
=

500

1000
<

729

1000
≤ x3 ≤ 1331

1000
<

1500

1000
=

3

2
.

Summing up we have for all x with |x− 1| < 1
10 that |F (x)− F (1)| ≥ 2. This makes it impossible to

have δ as in (∆) above for ε = 2.

Etienne reasoned from the epsilon-delta statement and factorised to get

ε > | 1

1− x3
| = 1

|x− 1| |x2 + x+ 1|
>

1

δ|x2 + x+ 1|

and concluded this can not be. Correct, but needs more reasoning.

Other people took ε = 1 and reasoned from

| 1

1− x3
| < 1 ⇐⇒ |1− x3| = |x3 − 1| > 1.

The second one rewrites as
x3 − 1 > 1 or x3 − 1 < −1,

so either x3 > 2 or x3 < 0 must hold. The inequality |F (x) − F (1)| < 1 is thus equivalent with

x 6∈ [0, 2
1
3 ]. That is: |F (x)−F (1)| > 1 for every x ∈ [0, 2

1
3 ]. But this interval has nonempty intersection

with every interval (1−δ, 1+δ). So for ε = 1 no δ > 0 exists for which |x−1| < δ =⇒ |F (x)−F (1)| < 1.

Per reasoned correctly from
|x− 1| < 1 =⇒ |x3 − 1| < 8,

which follows from
x3 − 1 = (x2 + x+ 1)(x− 1)

the factor x2 + x+ 1 being bounded in absolute value by 7 for x ∈ (0, 2).
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b) For every n ∈ IN we define fn : (0, 1)→ IR by

fn(x) = F (
x

n
) for all x ∈ (0, 1).

Prove that fn(x) is a convergent sequence for every x ∈ (0, 1).

Answer. Fix x ∈ (0, 1). Since x/n → 0 as n → ∞ and F is continuous in 0 its is clear that the limit
will be F (0) = 0. But you have to prove this with an ε-argument that ends with |F ( x

n )| < ε. Since

0 < F (
x

n
) =

( x
n )3

1− ( x
n )3

=
x3

n3 − x3
<

1

n3 − 1
< ε

for all n > 1 and the latter inequality is equivalent to

n3 > 1 +
1

ε

we can now give the proof: let ε > 0. Choose N > 1 + 1
ε . Then for all n ≥ N it holds that for all

n > 1 and the latter inequality is equivalent to

n3 ≥ N3 ≥ N > 1 +
1

ε

and thereby

|F (
x

n
)| < ε.

This completes the proof.

c) Prove that the convergence is uniform on (−1, 1).

This should have asked for uniform convergence. My mistake. Occasional bonus points.

Problem 2. Let f : IR→ IR be defined by

f(x) = 2x+
1

3
x3.

This f can next earn you

a + b + c + d = 2 + 1 + 2 + 4 = 9 points

a) Use epsilon-delta arguments for the appropriate remainder term to show f is differentiable in x = 0.

Answer. With linear approximation 2x the remainder term is R(x) = 1
3x

3. We have for x 6= 0 that

|R(x)| < ε|x| ⇐⇒ |1
3
x3| < ε|x| ⇐⇒ |x2| < 3ε,

so take δ =
√

3ε to conclude that 0 < |x| <
√

3ε implies 0 < |R(x)| < ε|x|.

b) Now consider for y ∈ IR fixed the equation f(x) = y and the scheme xn = xn−1 +f ′(0)−1(y−f(xn−1))
to solve f(x) = y. Verify that

xn =
1

2
y − 1

6
x3n−1. (1)

Answer. Use f ′(0) = 2 and f(xn−1) = 2xn−1 + 1
3x

3
n−1. The linear terms in xn−1 drop out.

c) Starting from x0 = 0 the scheme (1) defines a sequence xn. Suppose that for some n ∈ IN it holds that

|xn−1| ≤ 1 and |xn| ≤ 1 .

Use (1) to show that

|xn+1 − xn| ≤
1

2
|xn − xn−1| . (2)

Answer. We have

xn+1 − xn =
1

6
x3n−1 −

1

6
x3n =

1

6

(
x2n + xnxn−1 + x2n−1

)
(xn−1 − xn),
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so

|xn+1 − xn| ≤
1

6
|x2n + xnxn−1 + x2n−1| |xn−1 − xn|

≤ 1

6
(|xn|2 + |xn| |xn−1|+ |xn−1|2︸ ︷︷ ︸

≤1+1+1

) |xn−1 − xn| ≤
1

2
|xn−1 − xn|.

d) The sequence xn depends on y, and thereby defines a sequence of functions gn by setting gn(y) = xn.

Show there exists r > 0 such that gn is a uniform Cauchy sequence in C([−r, r]).
Answer. I’ll keep this short, see also the previous exam. Here we have

|xn| = |s1 + s2 + · · ·+ sn| ≤ |s1|+ |s2|+ · · ·+ |sn| ≤ (1 +
1

2
+

1

4
+ · · ·+ 1

2n−1
)|s1| ≤ 2|s1|

as long as all previous xk have |xk| ≤ 1. So we have to make sure that |s1| ≤ 1
2 . Since s1 = x1 = y

2 ,
we see that with |y| ≤ 1 we’re fine and obtain

|sn| ≤
|s1|

2n−1
=

|y|
2 2n−1

≤ 1

2n
.

And then m > n ≥ N gives

|xm − xn| = |sm + · · ·+ sn| ≤ |sm|+ · · ·+ |sn+1| < 2
1

2n+1
=

1

2n
≤ 1

2N
,

so given ε > 0 choose N ∈ IN with 2N > 1
ε .

Problem 3. For a + b + c + d = 2 + 2 + 2 + 2 = 8 points consider solutions of

f ′′(x) +
1

x
f ′(x) + f(x) = 0,

a differential equation posed for x > 0 first here.

a) Suppose that
f(x) = a0 + a2x

2 + a4x
4 + a6x

6 + a8x
8 + · · ·

is a power series solution defined for all x in some interval (0, r). Show that

a2n = −a2n−2
(2n)2

for all ∈ IN.

Answer. From the expression for f we find

f ′(x) = 2a2x+ 4a4x
3 + 6a6x

5 + 8a8x
7 + · · · ,

1

x
f ′(x) = 2a2 + 4a4x

2 + 6a6x
3 + 8a8x

6 + · · · ,

f ′′(x) = 2a2 + 3 4a4x
2 + 5 6a6x

4 + 7 8a8x
6 + · · · ,

so sorting it out we find

f ′′(x)+
1

x
f ′(x)+f(x) = a0+2a2+2a2+(a2+4a4+3 4a4)x2+(a4+6a6+5 6a6)x4+(a6+8a8+7 8a8)x6+· · · ,

which we put equal to zero by setting

a0 + 2a2 + 2a2 = 0, a2 + 4a4 + 3 4a4, a4 + 6a6 + 5 6a6, a6 + 8a8 + 7 8a8 = 0, . . . ,

whence
a2 = −a0

4
, a4 = −a2

42
, a6 = −a4

62
, a8 = −a6

82
, . . . ,

and we recognise that every next a2n is minus the previous one divided by the square of 2n, also for
2n = 2.



4

b) Fix x > 0. Use a) and an estimate for n sufficiently large to establish convergence of the series.

Answer. With a0 = 1 we see that we get

a2n = − 1

2n(n!)2
,

and that

f(x) =

∞∑
n=0

(−1)2x2n

2n(n!)2
,

but that’s not needed for the answer for which you should know to go for the simple geometric estimate

|a2nx2n| ≤
1

2
|a2n−2x2n−2|,

equivalent to
x2

(2n)2
≤ 1

2
,

as every next term a2nx
2n in the power series gets an additional x2 in the numerator and −(2n)2 in

the denominator. So given x you have the desired estimate provided

n2 ≥ x2

2
,

which certainly holds if n ≥ |x|. Thus the sum of the terms from n+ 1 to any m > n are bounded by
the nth term, which in turn goes to zero as n→∞ for x fixed, by the same reasoning.

c) Let f be any solution of the differential equation defined on an open interval contained in IR+ and let

E(x) = f ′(x)2 + f(x)2.

Show that E′(x) ≤ 0 on that interval. Hint: use the differential equation and not the power series
expansion of its solution when you evaluate E′(x).

Answer. We have

E′(x) = 2f ′′(x)f ′(x) + 2f ′(x)f(x) = −2(f(x) +
f ′(x)

x
)f ′(x) + 2f ′(x)f(x) = −f

′(x)2

x

d) By b) the power series in a) is a solution that satisfies f(x)→ 1 and f ′(x)→ 0 as x→ 0.

Show there are no other solutions on IR+ with this property. Hint: if g(x) is another such solution
then v(x) = f(x)− g(x) is also a solution of the differential equation. Apply c) to v.

Problem 4. For more than a + b + c + d + e = 2 + 2 + 2 + 2 + 2 = 10 points we consider the
differential equation f ′(x) = 1 + f(x)2 with initial value f(0) = 0.

a) Let r > 0 and suppose that f ∈ C([0, r]) is a solution. Integrate the differential equation to show that

f(x) =

∫ x

0

(1 + f(s)2) ds for all x ∈ [0, r]. (3)

Answer. Use s as integration variable and write

f(x) = f(0) +

∫ x

0

f ′(s) ds =

∫ x

0

(1 + f(s)2) ds ds.

NB. You cannot evaluate the integral because you don’t know f .

b) Denote the right hand side of (3) by (Φ(f))(x).

Explain why this defines a map Φ : C([0, r])→ C([0, r]).

Answer. As a function of x the integral is Lipschitz continuous if it exists as the integral of a bounded
function. The integral exists for every x ∈ [0, r] because s→ 1 + f(s)2 is continuous on [0, r]).
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c) Voor f ∈ C([0, r]) we write
|f |r = max

x∈[0,r]
|f(x)|

for the maximum norm of f . Show that

|Φ(f)− Φ(g)|
r
≤ r (|f |

r
+ |g|

r
) |f − g|

r

for every f, g ∈ C([0, r]).

Answer. Use

(Φ(f)− Φ(g))(x) = (Φ(f))(x)− (Φ(g))(x) =

∫ x

0

(1 + f(s)2) ds−
∫ x

0

(1 + g(s)2) ds

=

∫ x

0

(f(s)2 − g(s)2) ds.

We have
f(s)2 − g(s)2 = (f(s)− g(s))(f(s) + g(s)),

so

|(1 + f(s)2)− (1 + g(s)2)| ≤ |f(s)− g(s)| |f(s) + g(s)| ≤ |f − g|r |f + g|r ≤ (|f |r + |g|r )|f − g|r ,

whence

|Φ(f)− Φ(g))(x)| = |
∫ x

0

(f(s)2 − g(s)2) ds| ≤ r (|f |r + |g|r )|f − g|r

for all x ∈ [0, r], which proves the estimate.

d) Let r,R > 0 and
A = ArR = {f ∈ C([0, r]) : |f |

r
≤ R}.

Show that
|Φ(f)|

r
≤ r (1 +R2)

for every f ∈ A.

Answer.

|(Φ(f))(x)| = |
∫ x

0

(1 + f(s)2) ds| ≤
∫ x

0

|1 + f(s)2|) ds =

∫ x

0

(1 + f(s)2 ds

≤
∫ r

0

(1 + f(s)2︸ ︷︷ ︸
≤|f |2

r

) ds ≤ r(1 + |f |2
r
)

for all x ∈ [0, r].

e) Show there exist r > 0 and R > 0 such that Φ is a contraction on A.

Answer. To have Φ map A to A we need r(1 +R2) ≤ R, to have Φ contractive on A we need 2Rr < 1.
Take your pick of R > 0 and r > 0 for which these both hold.

f) Bonus (2 points): describe the set of all r > 0 and R > 0 for which Φ is a contraction on A.


