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Write the calculations and arguments that lead to your answers. Motivate your answers (refer to theorems
used). You can use earlier statements, even if you failed to prove them. Calculators/communication/internet
sources NOT allowed, except the course notes, use them!

Your grade will be 1 + T
4 , T your total score, maximal T = 36.

Problem 1. Let F : IR→ IR be defined by

F (x) =
x

1 + x

for all x 6= −1 and F (−1) = 1. This F can next earn you

a + b + c + d = 1 + 2 + 3 + 3 = 9 points.

a) Sketch the graph of F . Make sure you got it right for x ≥ 0. Which interval is {F (x) : x ≥ 0}?

b) Factorise F (x)− F (y) and prove that F is Lipschitz continuous on [0,∞) with Lipschitz constant 1.

Consider the integral equation

f(x) = 1 +

∫ x

0

f(s)

(1 + s)2(1 + f(s))
ds posed for all x ∈ [0, 1] (1)

and denote the right hand side of (1) by (Φ(f))(x). This defines a map Φ : A→ A, where

A = {f ∈ C([0, 1]) : f(x) ≥ 0 for all x ∈ [0, 1]}

is the subset of nonnegative functions in C([0, 1]).

c) Prove that Φ is a contraction. Hint: use b), in your estimates you may use that∫ 1

0

1

(1 + s)2
ds <

∫ ∞
0

1

(1 + s)2
ds = 1.

d) Explain why it follows that (1) has a unique positive solution f .

Problem 2. Let F be the function defined in Problem 1. This same F can next earn you another

a + b + c = 2 + 3 + 3 = 8 points

a) Prove that F is discontinuous in x = −1.

b) Let IR+ = {x ∈ IR : x > 0}. For every n ∈ IN we define fn : IR+ → IR+ by

fn(x) =
nx

1 + nx
for all x ∈ IR+.

Prove that fn(x)→ 1 as n→∞ for every x ∈ IR+.

c) Prove that the convergence in b) is uniform on [1,∞).
Hint: estimate |fn(x)− 1| for all x ∈ [1,∞) simultaneously.
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Problem 3. Consider the differential equation f ′′(x) = f(x).

a) Use a power series solution of the form

a0 + a2x
2 + a4x

4 + a6x
6 + a8x

8 + · · ·

to find an even solution with f(0) = 1. You may guess the expression for a2n from your calculations.

b) The power series that you (should) have found converges for all x ∈ IR. You don’t need your answer
to a) to continue. The derivative of f is an odd solution denoted by g. Explain in detail why

(f(x))2 − (g(x))2

is constant. Which constant?

a + b = 2 + 4 = 6 points

Problem 4. Let f : IR→ IR be defined by

f(x) = x(1 + x).

This f can next earn you

a + b + c + d + e = 3 + 1 + 3 + 3 + 5 = 15 points

a) The linear approximation of f(x) near x = 0 is given by x. Verify the epsilon-delta statement for the
remainder term that implies that f is differentiable in x = 0 with f ′(0) = 1.

b) Now consider for y ∈ IR the equation

f(x) = x(1 + x) = y (2)

and the modified Newton scheme xn = xn−1 + f ′(0)−1(y − f(xn−1)) to solve f(x) = y. Verify that

xn = y − x2n−1. (3)

c) Starting from x0 = 0 the scheme (3) defines a sequence xn that depends on y, and thereby a sequence
of functions gn by defining gn(y) = xn. So g0(y) = 0 and g1(y) = y. Evaluate g2(y) and g3(y).

Next it’s about finding an (inverse) function g as the uniform limit of the sequence gn.

d) Following the notation in (3.1) in Chapter 3 and avoiding the Greek letter ξ we write sn = xn− xn−1,
with s for step. Now suppose that for some n ∈ IN it holds that

|xn−1| ≤
1

4
and |xn| ≤

1

4
.

Use (3) to prove that then

|sn+1| ≤
1

2
|sn| . (4)

This allows to continue the story-line in Chapter 3 for all y ∈ [− 1
8 ,

1
8 ] simultaneously.

e) Use d) to show that gn is a uniform Cauchy sequence in C([− 1
8 ,

1
8 ]), see Definition 4.2.

Hint: recall that xn = gn(y) and show first that

|y| ≤ 1

8
=⇒ |xn| ≤ 2 |y| ≤ 1

4
for all n ∈ IN.


