
Vrije Universiteit Amsterdam May 29 2020
Mathematical Analysis, open course notes take home exam First examiner: Joost Hulshof
3 hours Second examiner: Bob Rink

Write the calculations and arguments that lead to your answers. Motivate your answers (refer to theorems
used). You can use earlier statements, even if you failed to prove them. Calculators/communication/internet
sources NOT allowed, except the course notes, use them!

Your grade will be 1 + T
4 , T your total score, maximal T = 36.

Problem 1. Let F : IR→ IR be defined by

F (x) =
x

1 + x

for all x 6= −1 and F (−1) = 1. This F can next earn you

a + b + c + d = 1 + 2 + 3 + 3 = 9 points.

a) Sketch the graph of F . Make sure you got it right for x ≥ 0. Which interval is {F (x) : x ≥ 0}?

b) Factorise F (x)− F (y) and prove that F is Lipschitz continuous on [0,∞) with Lipschitz constant 1.

Consider the integral equation

f(x) = 1 +

∫ x

0

f(s)

(1 + s)2(1 + f(s))
ds posed for all x ∈ [0, 1] (1)

and denote the right hand side of (1) by (Φ(f))(x). This defines a map Φ : A→ A, where

A = {f ∈ C([0, 1]) : f(x) ≥ 0 for all x ∈ [0, 1]}

is the subset of nonnegative functions in C([0, 1]).

c) Prove that Φ is a contraction. Hint: use b), in your estimates you may use that∫ 1

0

1

(1 + s)2
ds <

∫ ∞
0

1

(1 + s)2
ds = 1.

d) Explain why it follows that (1) has a unique positive solution f .

Answers

a) Near x = 0 the graph looks like y = x, for |x| large like y = 1, and {F (x) : x ≥ 0} = [0, 1).

b) For x, y ≥ 0 we have

F (x)− F (y) =
x

1 + x
− y

1 + y
=
x(1 + y)− (1 + x)y

(1 + x)(1 + y)
=

x− y
(1 + x)(1 + y)

,

with denominator at least 1 for x, y ≥ 0, so |F (x)− F (y)| ≤ |x− y|.

c) Let f ∈ A. Then

(Φ(f))(x) = 1 +

∫ x

0

f(s)

(1 + s)2(1 + f(s))
ds

exists for every x ∈ [0, 1] as one plus the nonnegative integral of a continuous nonnegative function.
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As a function of x the new function Φ(f) : [0, 1] → [1,∞) is continuous because
∫ x

0
φ is (Lipschitz)

continuous in x for every integrable φ : [0, 1]→ IR. Thus Φ maps A to A.

To see if Φ is a contraction let f, g ∈ A and write

(Φ(f)− Φ(g))(x) = (Φ(f))(x)− (Φ(g))(x) =

1 +

∫ x

0

f(s)

(1 + s)2(1 + f(s))
ds− 1−

∫ x

0

g(s)

(1 + s)2(1 + g(s))
ds =∫ x

0

1

(1 + s)2

(
f(s)

1 + f(s)
− g(s)

1 + g(s)

)
︸ ︷︷ ︸

F (f(s))−F (g(s))

ds.

Using b) we estimate

|(Φ(f)− Φ(g))(x)| ≤
∫ x

0

1

(1 + s)2
|F (f(s))− F (g(s))| ds

≤
∫ x

0

1

(1 + s)2
|f(s)− g(s)| ds ≤

∫ x

0

1

(1 + s)2
ds ||f − g||max

for all x ∈ [0, 1], so

||Φ(f)− Φ(g)||max ≤
∫ 1

0

1

(1 + s)2
ds︸ ︷︷ ︸

= 1
2

||f − g||max.

This holds for all f, g in A, so indeed Φ : A→ A is a contraction, with contraction factor 1
2 .

d) By definition of Φ the nonnegative solutions of (1) are precisely the fixed points of Φ : A→ A.

The set A is closed in C([0, 1]), C([0, 1]) is complete with metric defined by d(f, g) = ||f − g||max.

So Φ has a unique fixed point in A, and thereby there exists a unique solution in A.

Problem 2. Let F be the function defined in Problem 1. This same F can next earn you another

a + b + c = 2 + 3 + 3 = 8 points

a) Prove that F is discontinuous in x = −1.

b) Let IR+ = {x ∈ IR : x > 0}. For every n ∈ IN we define fn : IR+ → IR+ by

fn(x) =
nx

1 + nx
for all x ∈ IR+.

Prove that fn(x)→ 1 as n→∞ for every x ∈ IR+.

c) Prove that the convergence in b) is uniform on [1,∞).
Hint: estimate |fn(x)− 1| for all x ∈ [1,∞) simultaneously.

Answers

a) For x 6= −1 we have

F (x)− F (−1) =
x

1 + x
− 1 = − 1

1 + x

which has a denominator that is small for x close to −1. For instance, we have

|x+ 1| < 1

2
=⇒ 1

|x+ 1|
> 2.
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It follows that the epsilon-delta statement for continuity in x = −1 fails with ε = 2, because for every
δ > 0 we can choose x with |x − −1| < δ as well as |x − −1| < 1

2 , and for such x the inequality
|F (x)− F (−1)| < 2 fails.

b) Fix x > 0. The limit 1 is given, so let ε > 0. We have to prove the existence of an N ∈ IN such that

|fn(x)− 1| = | nx

1 + nx
− 1| = 1

1 + nx
< ε

for all n ≥ N . The desired inequality is equivalent to

1 + nx >
1

ε
⇐⇒ n >

1− ε
εx

.

If ε ≥ 1 this always holds, and we can take N = 1. For ε < 1 choose N ∈ IN such that

N >
1− ε
εx

.

Then

n ≥ N >
1− ε
εx

and thereby |fn(x)− 1| < ε

for all n ≥ N . This completes the proof the way I did the first examples in the course (Exercise 2.32).
But quicker is

|fn(x)− 1| = | nx

1 + nx
− 1| = 1

1 + nx
<

1

nx
< ε,

and taking

N >
1

εx
.

c) For x ≥ 1 we can choose

N >
1− ε
εx

as in b) for all x ≥ 1 simultaneously, by choosing

N >
1− ε
ε

.

Then
n ≥ N
x ≥ 1

=⇒ n ≥ N ≥ 1− ε
ε
≥ 1− ε

εx
,

whence

n >
1− ε
εx

,

equivalent to the desired inequality |fn(x) − 1| < ε as before. This completes the proof. Here too we
might have taken the quicker approach choosing N > 1

ε , as in b).

Problem 3. Consider the differential equation f ′′(x) = f(x).

a) Use a power series solution of the form

a0 + a2x
2 + a4x

4 + a6x
6 + a8x

8 + · · ·

to find an even solution with f(0) = 1. You may guess the expression for a2n from your calculations.

b) The power series that you (should) have found converges for all x ∈ IR. You don’t need your answer
to a) to continue. The derivative of f is an odd solution denoted by g. Explain in detail why

(f(x))2 − (g(x))2

is constant. Which constant?

a + b = 2 + 4 = 6 points
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Answers

a) Write
f(x) = a0 + a2x

2 + a4x
4 + a6x

6 + a8x
8 + · · · ,

f ′(x) = 2a2x+ 4a4x
3 + 6a6x

5 + 8a8x
7 + · · · ,

f ′′(x) = 2a2 + 3 · 4a4x
2 + 5 · 6a6x

4 + 7 · 8a8x
6 + · · · .

Use f(0) = 1 conclude a0 = 1 and then f ′′(x) = f(x) to choose a2, a4, . . . with

2a2 = a0 = 1, 3 · 4a4 = a2, 5 · 6a6 = a4, . . . , whence a2 =
1

2
, a4 =

1

4 · 3 · 2
, a6 =

1

6 · 5 · 4 · 3 · 2
,

and recognise the general expression a2n = 1
(2n)! , consistent also with a0 and a2.

b) It’s given that the power series are valid for all x. Define g = f ′. Then g′ = f ′′ = f so by the chain
rule the derivative of f2− g2 is equal to 2ff ′− 2gg′ = 2fg− 2gf ′′ = 2fg− 2gf = 0 on the whole of IR.
The mean value theorem now implies that f(a)2− g(a)2 = f(b)2− g(b)2 for all a, b ∈ IR, and thus that

f(x)2 − g(x)2 = f(1)2 − g(0)2 = 1 for all x ∈ IR.

Problem 4. Let f : IR→ IR be defined by

f(x) = x(1 + x).

This f can next earn you

a + b + c + d + e = 3 + 1 + 3 + 3 + 5 = 15 points

a) The linear approximation of f(x) near x = 0 is given by x. Verify the epsilon-delta statement for the
remainder term that implies that f is differentiable in x = 0 with f ′(0) = 1.

b) Now consider for y ∈ IR the equation

f(x) = x(1 + x) = y (2)

and the modified Newton scheme xn = xn−1 + f ′(0)−1(y − f(xn−1)) to solve f(x) = y. Verify that

xn = y − x2
n−1. (3)

c) Starting from x0 = 0 the scheme (3) defines a sequence xn that depends on y, and thereby a sequence
of functions gn by defining gn(y) = xn. So g0(y) = 0 and g1(y) = y. Evaluate g2(y) and g3(y).

Next it’s about finding an (inverse) function g as the uniform limit of the sequence gn.

d) Following the notation in (3.1) in Chapter 3 and avoiding the Greek letter ξ we write sn = xn− xn−1,
with s for step. Now suppose that for some n ∈ IN it holds that

|xn−1| ≤
1

4
and |xn| ≤

1

4
.

Use (3) to prove that then

|sn+1| ≤
1

2
|sn| . (4)

This allows to continue the story-line in Chapter 3 for all y ∈ [− 1
8 ,

1
8 ] simultaneously.

e) Use d) to show that gn is a uniform Cauchy sequence in C([− 1
8 ,

1
8 ]), see Definition 4.2.

Hint: recall that xn = gn(y) and show first that

|y| ≤ 1

8
=⇒ |xn| ≤ 2 |y| ≤ 1

4
for all n ∈ IN.
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Answers

a) Since f(x) = f(0) + 1x + R(x) with |R(x)| = |x|2 = |x| |x| < ε|x| if 0 < |x| < ε it follows that for all
ε > 0 there exists δ > 0, namely δ = ε, such that 0 < |x| < δ = ε implies |R(x)| < ε|x|. Thus f is
differentiable in x = 0 with f ′(0) = 1.

b) The scheme is of the form xn = F (xn) with F (x) = x+ f ′(0)−1(y − f(x)). For the given f this gives
F (x) = x+ 1−1(y − x(1 + x)) = x+ y − x− x2 = y − x2, so xn = y − x2

n−1.

c) With x1 = g1(y) = y we have g2(y) = x2 = y − y2 and then g3(y) = x2 = y − (y − y2)2.

d) We have

sn+1 = xn+1 − xn = y − x2
n − y + x2

n−1 = −(xn + xn−1)(xn − xn−1) = (xn + xn−1)sn,

and thereby

|sn+1| ≤ |xn + xn−1| |sn| ≤ (|xn|+ |xn−1|) |sn| ≤ (
1

4
+

1

4
)|sn| =

1

2
sn.

Note that just like xn the sn are y-dependent.

e) We have to get |xm − xn| = |gm(y) − gn(y)| < ε for all y with |y| ≤ 1
8 simultaneously, provided

m > n ≥ N , N ∈ IN to be found. Following the hint we start from

|x1| = |s1| = |y| ≤ 2|y| ≤ 2

8
=

1

4

to get

|x2| ≤ |x1|+ |s2| ≤ |s1|+
1

2
|s1| = (1 +

1

2
)|s1| ≤ 2|y| ≤ 1

4
,

whence

|x3| ≤ |x2|+ |s3| ≤ (1 +
1

2
)|s1|+

1

2
|s2| ≤ (1 +

1

2
+

1

4
)|s1| ≤ 2|y| ≤ 1

4
.

In the next step we have

|x4| ≤ |x3|+ |s4| ≤ (1 +
1

2
+

1

4
)|s1|+ |s4| ≤ (1 +

1

2
+

1

4
+

1

8
)|s1| ≤ 2|y| ≤ 1

4
,

because |s4| ≤ 1
2 |s3| ≤ 1

4 |s2| ≤ 1
8 |s1|.

And so on. We conclude that all |xn| = |gn(y)| are bounded by 1
4 , whence

|sn+1| ≤
1

2n
|s1| =

1

2n
|y| ≤ 1

2n+3

for all y with |y| ≤ 1
8 . But then we have for all such y and m > n ≥ N that

|gn(y)−gm(y)| = |xm−xn| ≤ |sn+1|+ · · ·+ |sm| ≤ |sn+1| (1 +
1

2
+

1

4
+ · · · )︸ ︷︷ ︸

finitely many terms

≤ 2|sn+1| ≤
1

2n+2
≤ 1

2N+2
.

Choosing N so large that 2N+2 > 1
ε the proof that gn is uniformly Cauchy on the y-interval [− 1

8 ,
1
8 ] is

now complete.


