VU Amsterdam	Mathematical Analysis (XB_0009)
Faculty of Sciences	Solutions to Resit Exam 2019
Gabriele Benedetti	

Solution to Problem 1.

The given function is bounded on [0,1]. Indeed, $|f(x)| \leq 1$ for all $x \in [0,1]$. Moreover, it is discontinuous only at x = 0. From the lectures we know that if $f: [a,b] \to \mathbb{R}$ is a bounded function with a finite number of discontinuities, then f is integrable. This finishes the proof.

Solution to Problem 2.

We have

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} 42 + |x|^{\frac{1}{41}} \sin(\frac{1}{x^{43}}) = 42 + \lim_{x \to 0} |x|^{\frac{1}{41}} \sin(\frac{1}{x^{43}}) = 42 + 0 = 42.$$

To compute the last limit, we used the sandwich theorem. Indeed, $-|x|^{\frac{1}{41}} \le |x|^{\frac{1}{41}} \sin(\frac{1}{x^{43}} \le |x|^{\frac{1}{41}})$ and we know that $\lim_{x\to 0} |x|^{\frac{1}{41}} = 0$.

Solution to Problem 3.

a) The Archimedean property says that for all $M \in \mathbb{R}$ there is $N \in \mathbb{N}$ such that N > M. If $x \in (0,1)$, let y := 1-x. Then $x = 1-y = \frac{1}{1+\frac{y}{1-y}}$. Call $z := \frac{y}{1-y} \in (0,\infty)$ so that $x = \frac{1}{1+z}$. Let $\varepsilon > 0$. Consider $n \ge N$ where N is to be chosen below. Then,

$$0 \le x^n = \frac{1}{(1+z)^n} \le \frac{1}{1+nz} \le \frac{1}{1+Nz}.$$

This last quantity is less than $\varepsilon > 0$ if $N > M := \frac{1-\frac{1}{\varepsilon}}{z}$. Such an N is obtained by the Archimedean property. By definition of convergence, we see that $\lim_{n\to\infty} x^n = 0$ for all $x \in (0,1)$.

b) We have

$$x^{3} - a^{3} - 3a^{2}(x - a) = (x^{2} + ax + a^{2})(x - a) - 3a^{2}(x - a) = (x^{2} + ax - 2a^{2})(x - a)$$
$$= (x + 2a)(x - a)(x - a)$$

So $R_3(a,x) = \rho(x)(x-a)$ where $\rho(x) = (x+2a)(x-a)$. Now ρ is a continuous function with $\rho(a) = 0$. We deduce that f is differentiable at x = a with derivative equal to $3a^2$.

c) If m > n, then $|f_m(x) - f_n(x)| = |x^m - x^n| = x^n - x^m := g(x)$. The function $g: [0,1] \to \mathbb{R}$ is differentiable and non-negative. To compute its maximum we consider the derivative $g'(x) = nx^{n-1} - mx^{m-1}$. Suppose that g'(x) = 0 and $x \in (0,1)$. Then $x^{m-1-(n-1)} = \frac{n}{m}$, which means that $x = \left(\frac{n}{m}\right)^{\frac{1}{m-n}}$. Since g(0) = 0 and g(1) = 0, we deduce that g has a maximum at $x_{mn} := \left(\frac{n}{m}\right)^{\frac{1}{m-n}}$. Therefore, $d(f_m, f_n) = f_n(x_{mn}) - f_m(x_{mn})$.

1

d) If (f_n) were a Cauchy sequence, then the sequence of real numbers $d(f_{2n}, f_n)$ converges to 0. Indeed, for all $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $d(f_m, f_n) < \varepsilon$ for all $n, m \geq N$. In particular, taking m = 2n, we get $|d(f_{2n}, f_n)| < \varepsilon$ for all $n \geq N$. Now $x_{2nn} = \frac{1}{2^{\frac{1}{n}}}$. Therefore, $d(f_{2n}, f_n) = f_n(x_{2nn}) - f_{2n}(x_{2nn}) = \frac{1}{2} - \frac{1}{2^2} = \frac{1}{4}$ which is not converging to 0.

Solution to Problem 4.

This problem is not relevant for the 2023 course.

Solution to Problem 5.

- a),b),c) The solution can be found in Problem 2 of the 2021 final exam.
 - d) Consider the set $A := \{ f \in C[0,1] : 0 \le f(x) \le 1, \ \forall x \in [0,1] \}$. This set is non-empty and closed with respect to the uniform metric d. If $f \in A$, then $0 \le \cos(f(s)) \le 1$ for all $s \in [0,1]$ and therefore

$$0 \le \int_0^x \cos(f(s)) ds \le \int_0^x 1 ds = x \le 1.$$

Thus, the map $\Phi \colon A \to A$ is well-defined. By a), we know that there is $r \in (0,1]$ such that $|\cos x - \cos y| \le r|x-y|$ for all $x,y \in [0,1]$. With this information we can show that the map Φ is a contraction with respect to the uniform metric d. Indeed, for all $f,g \in A$ and all $x \in [0,1]$ we have

$$|\Phi(f)(x) - \Phi(g)(x)| \le \int_0^x |\cos(f(s)) - \cos(g(s))| ds \le \int_0^x r|f(s) - g(s)| ds$$

$$\le \int_0^x rd(f, g) ds$$

$$= xrd(f, g)$$

$$\le rd(f, g)$$

Thus, $d(T(f), T(g)) \leq rd(f, g)$ showing that T is a contraction. Since A is a non-empty closed subset of the complete metric space C[0, 1], the Banach contraction principle implies that Φ has a unique fixed point f. This f satisfies the desired equation.

Solution to Problem 6.

- a) The function f_2 in the interval $[0, \frac{1}{2}]$ has slope $L_1 = \frac{f(\frac{1}{2}) f(0)}{\frac{1}{2}} = \frac{2}{4^{\frac{1}{3}}}$. The function f_2 in the interval $[\frac{1}{2}, 1]$ has slope $L_2 = \frac{f(1) f(\frac{1}{2})}{\frac{1}{2}} = \frac{2}{4^{\frac{1}{3}}} (4^{\frac{1}{3}} 1) < \frac{2}{4^{\frac{1}{3}}} = L_1$. Therefore, the smallest possible Lipschitz constant r_2 for f_2 in the whole interval [0, 1] is equal to L_1 .
- b) Since f is continuous on a compact subset of \mathbb{R} , it is uniformly continuous.
- c) Let $x \in [0,1]$. Take j such that $x \in I_i$. Then,

$$|f_n(x) - f(x)| \le |f_n(x) - f(x_i)| + |f(x_i) - f(x)| = |f_n(x) - f_n(x_i)| + |f(x_i) - f(x)|,$$

where we used that $f_n(x_j) = f(x_j)$. Now, $f_n(x_j)$ lies between $f_n(x_{j-1})$ and $f_n(x_j)$ since f_n is linear on the interval I_j . Therefore,

$$|f_n(x) - f_n(x_j)| \le |f_n(x_{j-1}) - f_n(x_j)| = |f(x_{j-1}) - f(x_j)|.$$

Thus,

$$|f_n(x) - f(x)| \le |f(x_{j-1}) - f(x_j)| + |f(x_j) - f(x)| < \varepsilon + \varepsilon,$$
 since $|x - x_j| \le \frac{1}{n} < \delta$ and $|x_{j-1} - x_j| \le \frac{1}{n} < \delta.$

d) Let $\varepsilon > 0$ and let $\delta > 0$ the suitable response for ε in the definition of uniform continuity of f. Take $N \in \mathbb{N}$ such that $N > \frac{1}{\delta}$. Then for all $n \geq N$, we have $n > \frac{1}{\delta}$ and by c) we conclude that $d(f_n, f) < 2\varepsilon$ where d is the uniform metric. This means that $f_n \to f$ uniformly on [0, 1].