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Mathematical Analysis, Final Exam Lecturer: Joost Hulshof
Exercises 1,2,3,5 count for 6 points each, 4 counts for 3 points, 3 points for free. Divide by 3.

Question 1. (2 + 1 + 3) In this exercise you will have to use the Banach Contraction Theorem in C([0, 1]).

a) Show that the function g : IR→ [0, 1] defined by

g(x) =
1

1 + x2

is Lipschitz continuous with Lipschitz constant L = 1. Hint: factorise g(x) − g(y). You may use
without proof that

−1

2
≤ x

1 + x2
≤ 1

2
.

We have

g(x)− g(y) =
1

1 + x2
− 1

1 + y2
=

y2 − x2

(1 + x2)(1 + y2)
=

x+ y

(1 + x2)(1 + y2)
(y − x),

and ∣∣ x+ y

(1 + x2)(1 + y2)

∣∣ ≤ |x|
(1 + x2)(1 + y2)

+
|y|

(1 + x2)(1 + y2)
≤ |x|

1 + x2
+
|y|

1 + y2
≤ 1

2
+

1

2
,

so |g(x)− g(y)| ≤ |x− y| for all x, y ∈ IR.

b) Prove that g is uniformly continuous. Specify the choice of δ > 0 in the definition for given ε > 0.

Let ε > 0. Use the same estimate or the statement in (a). Since |g(x)−g(y)| ≤ |x−y| the choice δ = ε
does the job: x− y| < δ = ε implies that |g(x)− g(y)| ≤ |x− y| < ε.

c) Prove that the integral equation

f(x) =

∫ x

0

1

(1 + s)(1 + f(s)2)
ds for all x ∈ [0, 1]

has a unique solution f in C([0, 1]). Use the right hand side to define a new function, say F , by

F (x) =

∫ x

0

1

(1 + s)(1 + f(s)2)
ds for all x ∈ [0, 1].

Since the integrand is bounded, by 1 in fact, we have, using the “triangle inequality” for integrals,

|F (x)− F (y)| =
∣∣ ∫ x

y

1

(1 + s)(1 + f(s)2)
ds
∣∣ ≤ ∣∣ ∫ x

y

∣∣ 1

(1 + s)(1 + f(s)2)

∣∣ ds∣∣ ≤ ∣∣ ∫ x

y

1 ds
∣∣ = |x− y|

so f is Lipschitz continuous with Lipschitz constant 1. In particular F ∈ C([0, 1]) and the map Φ is
well defined by

f
Φ−→ F from C([0, 1]) to C([0, 1]).

To see if Φ is a contraction we look at F = Φ(f) and G = Φ(g). The difference F − G is defined by
(F −G)(x) = F (x)−G(x) =∫ x

0

1

(1 + s)(1 + f(s)2)
ds−

∫ x

0

1

(1 + s)(1 + g(s)2)
ds =

∫ x

0

1

1 + s

(
1

1 + f(s)2
− 1

1 + g(s)2

)
ds,

so by (a) and the “triangle inequality” for integrals again

|(F −G)(x)| ≤
∫ x

0

1

1 + s
|f(s)− g(s)| ds ≤

∫ x

0

1

1 + s
d(f, g) ds ≤

∫ 1

0

1

1 + s
ds d(f, g) = ln 2 d(f, g)

for all x ∈ [0, 1] so d(Φ(f),Φ(g)) ≤ ln 2 d(f, g) for all f, g ∈ C([0, 1]). Thus Φ is a contraction on the
complete metric space C([0, 1]) and therefore f = Φ(f) has a unique solution in C([0, 1]).
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Question 2. (2+2+2) The differential equation p′′(x) = p(x) has a power series solution which is convergent
for every x ∈ IR and satisfies the conditions p(0) = 1 and p′(0) = 0.

a) Show that it is of the form

p(x) =

∞∑
n=0

anx
2n and find an expression for an.

Write
p(x) = α0 + α1x+ α2x

2 + α3x
3 + α4x

4 + α5x
5 + α6x

6 + · · · ,

then
p′(x) = α1 + 2α2x+ 3α3x

2 + 4α4x
3 + 5α5x

4 + 6α6x
5 + 7α7x

6 + · · · ,

p′′(x) = 2α2 + 3× 2α3x+ 4× 3α4x
2 + 5× 4α5x

3 + 6× 5α6x
4 + 7× 6α7x

5 + 8× 7α8x
4 + · · · ,

so p′′(x) = p(x) gives, comparing the coeffcients,

2α2 = α0, 4× 3α4 = α2, 6× 5α6 = α4, 8× 7α8 = α6,

2α3 = α1, 5× 4α5 = α3, 7× 6α7 = α5, 9× 8α9 = α7,

and so on. Since α0 = p(0) = 1 and α1 = p′(0) = 0 it follows that 0 = α1 = α3 = α5 = α7 = · · · , and

α2 =
1

2
, α4 =

1

4× 3
α2 =

1

4!
, α6 =

1

6× 5
α4 =

1

6!
, . . . ,

so

p(x) =

∞∑
n=0

x2n

(2n)!
, i.e. an =

1

(2n)!
.

b) Define q(x) by q(x) = p′(x). Show that the derivative of p(x)2 − q(x)2 is zero for all x ∈ IR.

With q(x) = p′(x) it follows from the differential equation that q′ = p′′ = p. The Leibniz rule (which
we proved for power series first) gives that the derivative of p2 is p′p + pp′ = 2pp′, a special case of
the chain rule. You can also directly use that 2pp′ is the derivative of p2. Likewise the derivative of
q2 is 2qq′ = 2p′p′′ = 2p′p. So p2 and q2 have the same derivative and thus the derivative of p2 − q2 is
identically equal to zero.

c) Formulate the theorem that implies that p(x)2 − q(x)2 is constant, and determine the constant.

The fact that f(x) = p(x)2 − q(x)2 is constant follows from the differentiability of f in every IR and
the mean value theorem applied to f on [a, b]. Indeed, the theorem says, for f ∈ C([a, b]) with f
differentiable on (a, b), that f(b)−f(a) = f(ξ)(b−a) for some ξ ∈ (a, b). For the f under consideration
it follows that f(b) − f(a) = 0 for every a and b with a < b. Thus f(b) = f(0) for every b > 0 and
f(a) = f(0) for every a < 0. So f(x) = f(0) = p(0)2 − q(0)2 = 1 for all x ∈ IR.
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Question 3. (1 + 2 + 3) Let f : [0, 1]→ [−1, 1] be given by

f(x) =

{
0 for x = 0

sin 1
x for x 6= 0

. Recall that we write, for a partition 0 ≤ x0 ≤ x1 ≤ · · · ≤ xN = 1,

Ik = [xk−1, xk], mk = inf
Ik
f, Mk = sup

Ik

f, S =

N∑
k=1

Mk (xk − xk−1), S =

N∑
k=1

mk (xk − xk−1).

a) Let ε > 0 and a ∈ (0, 1]. Prove that f is Riemann integrable on [a, 1], for instance by using a theorem.

The function f is continuous on [a, 1]. Therefore it integrable on [a, 1].

b) Use (a) and another theorem to prove the existence of such a partition with x0 = a for which S−S < ε.

Since f is integrable on [a, 1] there exists for every ε > 0 a partition a = x0 ≤ x1 ≤ · · · ≤ xN = 1 of
[a, 1] such that S − S < ε, by the ε-criterium for integrability of f on [a, 1].

c) Prove that f is Riemann integrable on [0, 1]. Hint1: start with ε > 0 and choose x0 = 0 < x1 = a < ε.

To verify the ε-criterion for integrability of f on [0, 1] let ε > 0. Choose x0 = 0 < x1 = a < ε. Then
use (b) to conclude the existence of a partition a = x1 ≤ · · · ≤ xN = 1 of [a, 1] with

N∑
k=2

Mk (xk − xk−1)−
N∑
k=2

mk (xk − xk−1) < ε.

Then

N∑
k=1

Mk (xk − xk−1)−
N∑
k=1

mk (xk − xk−1) = M1a+

N∑
k=2

Mk (xk − xk−1)−m1a−
N∑
k=2

mk (xk − xk−1)

< (M1 −m1)a+ ε ≤ 2a+ ε < 2ε+ ε = 3ε.

in which we used that −1 ≤ m1 ≤ M1 ≤ 1 whence M1 −m1 ≤ 2. Thus we have for very ε > 0 the
existence of a partition of [0, 1] with S−S < 3ε. By the ε-criterion and a 3-trick the function f is then
integrable on [0, 1].

Question 4. (3) Let f : IR→ IR be given by

f(x) =

{
0 for x = 0

x(1 +
√
|x| sin 1

x ) for x 6= 0

Prove that f is differentiable in x = 0: give the linear approximation of f(x) near x = 0 and verify the ε-δ
statement for the remainder term. Specify δ > 0 for given ε > 0.

We recognise x as the linear approximation for x close to 0. Then f(x) = x+R(x) with

R(x) = x
√
|x| sin 1

x

for x 6= 0. Let ε > 0. Then

|R(x)| =
∣∣x√|x| sin 1

x

∣∣ ≤√|x| |x| < ε |x|

if x 6= 0 and
√
|x| < ε. So choose δ > 0 such that

√
δ = ε. For 0 < |x| < δ it follows that

R(x) ≤
√
δ |x| = ε |x|.

This completes the proof.

1I changed the hint, < ε instead of < ε
2
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Question 5. (2 + 2 + 2) Let f : [0, 1]→ IR be defined by f(x) =
√
x. For n ∈ IN define fn : [0, 1]→ IR by

fn(xj) = f(xj) for xj =
j

n
, j = 0, 1, 2, . . . , n,

and by fn being linear on every interval Ij = [ j−1
n , jn ].

a) Sketch the graph of f4 and explain why f4 is Lipschitz continuous with Lipschitz constant 2. Un-
fortunately there was a mistake in the exam, of course the Lipschitz constant is not
1
2 .

Draw the piecewise linear curve through (0, 0), ( 1
4 ,

1
2 ), ( 1

2 ,
√

1
4 ), ( 3

4 ,
√

3
4 ), (0, 1). On the first interval

[0, 1
4 ] the slope is 2, which is larger than the slope on each of the intervals [ 1

4 ,
1
2 ], [ 1

2 ,
3
4 ], [ 3

4 , 1]. So for
x, y both in one of the intervals I1 = [0, 1

4 ], I2 = [ 1
4 ,

1
2 ], I3 = [ 1

2 ,
3
4 ], I4 = [ 3

4 , 1] we have |f(x)− f(y)| ≤
2 |x− y|. If not choose, then x and y are in two different intervals. If these are I1 and I2 we estimate

|f(x)− f(y)| ≤ |f(x)− f(
1

4
)|+ |f(

1

4
)− f(y)| ≤ 2 |x− 1

4
|+ 2 |1

4
− y| = 2 |x− y|,

and likewise if these are I2 and I3, or I3 and I4, with 1
4 replaced by 1

2 or 3
4 . If these are x ∈ I1 and

y ∈ I3, then we choose two intermediate points to conclude

|f(x)−f(y)| ≤ |f(x)−f(
1

4
)|+ |f(

1

4
)−f(

1

2
)|+ |f(

1

2
)−f(y)| ≤ 2 |x− 1

4
|+2 |1

4
− 1

2
|+2 |1

2
−y| = 2 |x−y|.

If these are x ∈ I1 and y ∈ I4 then

|f(x)− f(y)| ≤ |f(x)− f(
1

4
)|+ |f(

1

4
)− f(

1

2
)|+ |f(

1

2
)− f(

3

4
)|+ |f(

3

4
)− f(y)| ≤ · · · = 2 |x− y|.

Likewise in al remaining cases.

b) For ε > 0 let δ > 0 be given by the definition of uniform continuity of f , i.e.

∀x,y∈[0,1] : |x− y| < δ =⇒ |f(x)− f(y)| < ε,

and let n ∈ IN satisfy n > 1
δ . Prove that

|fn(x)− f(x)| < 2ε

for all x ∈ [0, 1]. Hint: given x ∈ [0, 1] use the inequality

|fn(x)− f(x)| ≤ |fn(x)− f(xj)|+ |f(xj)− f(x)|,

choose j such that x ∈ Ij , and then use the definition of fn to show that both terms are less than ε.

Let ε > 0. Look at the two terms in

|fn(x)− f(x)| ≤ |fn(x)− f(xj)|+ |f(xj)− f(x)|.

The second is smaller than ε if x ∈ Ij because then 0 ≤ xj−x ≤ xj−xj−1| = 1
n < δ. But also the first is

then smaller than ε, because |fn(x)−f(xj)| = |fn(x)−fn(xj)| ≤ |fn(xj−1)−fn(xj)| = |f(xj−1)−f(xj)|
and |xj − xj−1| = 1

n < δ. This proves the claim.

c) Use (b) to show that fn → f uniformly on [0, 1].

Let ε > 0. Choose N > 1
δ , δ from the definition of uniform continuity of f , and use (b). Then for all

x ∈ [0, 1] we have

n ≥ N =⇒ n >
1

δ
=⇒ |fn(x)− f(x)| ≤ 2ε.

This proves
∀ε>0 ∃N∈IN ∀x∈[0,1] : n ≥ N =⇒ |fn(x)− f(x)| ≤ 2ε,

the definition of uniform convergence with < ε replaced by < 2ε. The 2-trick completes the proof.


