Vrije Universiteit Amsterdam May 23, 2019
Mathematical Analysis, Final Exam Lecturer: Joost Hulshof
Exercises 1,2,3,5 count for 6 points each, 4 counts for 3 points, 3 points for free. Divide by 3.

Question 1. (2+ 1+ 3) In this exercise you will have to use the Banach Contraction Theorem in C([0, 1]).

a)

Show that the function g : IR — [0, 1] defined by

is Lipschitz continuous with Lipschitz constant L = 1. Hint: factorise g(z) — g(y). You may use
without proof that
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so |g(x) — g(y)| < |z —y| for all z,y € RR.

Prove that ¢ is uniformly continuous. Specify the choice of § > 0 in the definition for given € > 0.
Let € > 0. Use the same estimate or the statement in (a). Since |g(x) — g(y)| < |z —y| the choice § = ¢
does the job: x — y| < & = € implies that |g(z) — g(y)| < |z —y| < e.

Prove that the integral equation

e 1
f(x):/o 05905769 ds forall z€]0,1]

has a unique solution f in C([0,1]). Use the right hand side to define a new function, say F', by
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Fm:/ ds for all z € |0,1].
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Since the integrand is bounded, by 1 in fact, we have, using the “triangle inequality” for integrals,
|F(z) — |—|/ ds| |/ | ! |ds|<|/ lds| = |z -y
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so f is Lipschitz continuous with Lipschitz constant 1. In particular F € C([0,1]) and the map ® is
well defined by

f 2 F  from C([0,1]) to C(]0,1]).

To see if ® is a contraction we look at F' = ®(f) and G = ®(g). The difference F — G is defined by
(F = G)(z) = F(z) - G(z) =
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so by (a) and the “triangle inequality” for integrals again

|(F_G)($)|§/Om1+s|f( (s)|ds§/0m1}rsd(f,9)ds§/0 lis

for all x € [0,1] so d(®(f), ®(g)) < In2d(f,g) for all f,g € C([0,1]). Thus ® is a contraction on the
complete metric space C([0,1]) and therefore f = ®(f) has a unique solution in C([0,1]).

dsd(f,g) =In2d(f,g)




Question 2. (2+2+2) The differential equation p”(x) = p(z) has a power series solution which is convergent
for every z € IR and satisfies the conditions p(0) = 1 and p’(0) = 0.

a)

Show that it is of the form

(o]
p(z) = E anz®™ and find an expression for a,,.
n=0

Write
p(z) = ag + a1x + asx® + azx® + ayat + aszr® + g + -,

then
P (x) = a1 + 2007 + 3azz? + daya® + Sasz?t + 6agr® + Taga® 4 - - -

P (x) = 200 + 3 X 2037 + 4 x 3aux? + 5 x 4asx> + 6 X Sagzt + 7 x 6oz’ + 8 x Tagzrt + -,

so p’(z) = p(x) gives, comparing the coeflcients,
205220507 4><30é4=0[2, 6X50¢6=OZ4, 8X70¢8=(16,

23 = 1, D Xdas=a3, 7X6ar=a5 9X8ay=ar,

and so on. Since apg = p(0) =1 and «; = p'(0) = 0 it follows that 0 = a3 = a3 = a5 = ay = - -+, and
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Define q(x) by g(z) = p/(x). Show that the derivative of p(z)? — g(z)? is zero for all z € R.

With q(z) = p/(z) it follows from the differential equation that ¢’ = p"” = p. The Leibniz rule (which
we proved for power series first) gives that the derivative of p? is p'p + pp’ = 2pp’, a special case of
the chain rule. You can also directly use that 2pp’ is the derivative of p?. Likewise the derivative of
q? is 2qq' = 2p'p” = 2p'p. So p* and ¢ have the same derivative and thus the derivative of p? — ¢? is
identically equal to zero.

Formulate the theorem that implies that p(z)? — g(z)? is constant, and determine the constant.

The fact that f(z) = p(z)? — q(x)? is constant follows from the differentiability of f in every IR and
the mean value theorem applied to f on [a,b]. Indeed, the theorem says, for f € C([a,b]) with f
differentiable on (a,b), that f(b)— f(a) = f(§)(b—a) for some £ € (a,b). For the f under consideration
it follows that f(b) — f(a) = 0 for every a and b with a < b. Thus f(b) = f(0) for every b > 0 and
f(a) = f(0) for every a < 0. So f(z) = f(0) = p(0)? — q(0)> =1 for all z € R.



Question 3. (1+2+3) Let f:]0,1] — [-1, 1] be given by

0 forz=0
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sin% for & % 0 Recall that we write, for a partition 0 < zg < x1 < <zy=1,
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a) Let ¢ > 0 and a € (0,1]. Prove that f is Riemann integrable on [a, 1], for instance by using a theorem.

The function f is continuous on [a, 1]. Therefore it integrable on [a,1].

b) Use (a) and another theorem to prove the existence of such a partition with zq = a for which S-S < e.
Since f is integrable on [a, 1] there exists for every ¢ > 0 a partition a = g < x1 < --- < ay =1 of
[a,1] such that S — S < e, by the e-criterium for integrability of f on [a,1].

c¢) Prove that f is Riemann integrable on [0,1]. Hint!: start with e > 0 and choose 79 =0 < 21 = a < ¢.

To verify the e-criterion for integrability of f on [0,1] let € > 0. Choose g =0 < z1 = a < &. Then
use (b) to conclude the existence of a partition a = 1 < --- < axy =1 of [a, 1] with

Then

z
2
2

N
Z My (x5 — xp—1) — Z my (x — 2p—1) = Mia+ Z My (xk — Tp—1) — mia — Z my (T — Tr—1)
k=1

k=1 k=2 k=2
< (My—mi)a+e<2a+e<2+e=3e

in which we used that —1 < my < Ml < 1 whence My — m; < 2. Thus we have for very € > 0 the
existence of a partition of [0,1] with S — S < 3¢. By the e-criterion and a 3-trick the function f is then
integrable on [0, 1].

Question 4. (3) Let f : IR — IR be given by

0 forz =0
f(x):{ z(1+/|z|sin L) forz #0

x

Prove that f is differentiable in @ = 0: give the linear approximation of f(x) near = 0 and verify the -§
statement for the remainder term. Specify 6 > 0 for given € > 0.

We recognise x as the linear approximation for = close to 0. Then f(z) = x + R(x) with
R(z) = /[a] sin -
x
for x #0. Let € > 0. Then
IR(@)| = [oy/Telsin + | < Vil la] < ela]
if 2 # 0 and /|z| < e. So choose § > 0 such that v/§ = e. For 0 < |z| < § it follows that
R(z) < V6 |z| = ¢ z].

This completes the proof.

T changed the hint, < € instead of < %



Question 5. (2+ 2+ 2) Let f:]0,1] — IR be defined by f(z) = \/z. For n € IN define f, : [0,1] = R by

fn(z;) = f(z;) for xj:%, j=0,1,2,... n,

j—1

and by f, being linear on every interval I; = [1—, %]

2)

n

Sketch the graph of f; and explain why fy is Lipschitz continuous with Lipschitz constant 2. Un-

fortunately there was a mistake in the exam, of course the Lipschitz constant is not
1

3"

Draw the piecewise linear curve through (0,0),(5,3), (3, \/g)7 (3, \/g), (0,1). On the first interval

[0, %] the slope is 2, which is larger than the slope on each of the intervals [%, %], [%, %}, [%, 1]. So for
z,y both in one of the intervals I; = [0, 1], I = [+, 1], Iy = [£, 3], I, = [3,1] we have |f(z) — f(y)| <

2|z — y|. If not choose, then x and y are in two different intervals. If these are I1 and Iy we estimate

1F@) = )| <17 @)~ FDI+17G) — )l < 200 1 +215 —3l =2l —y,

and likewise if these are Iy and I3, or I3 and Iy, with i replaced by % or %, If these are x € I, and
y € I3, then we choose two intermediate points to conclude

1 1

@)= £ < 17@)~ AT~ FGIHIG) ~F@)l < 2le— 14215~ 514212 ~3 = 2fe—y.

If these are x € I and y € I, then

F@) ~ F)] < 1£(@) ~ FDI+ 1)~ FRI+1FG) = I +IC) ~ f@)] < -+ = 2]z — 3]
Likewise in al remaining cases.

For € > 0 let 6 > 0 be given by the definition of uniform continuity of f, i.e.
Vaweoa) : =yl <d = [f(z) - f(y)| <e,
and let n € N satisfy n > %. Prove that

[fn() = f2)] < 2¢

for all = € [0,1]. Hint: given x € [0, 1] use the inequality

[fu(2) = f(@)| < [fal@) = f2))] + [f(25) = f=)],

choose j such that = € I;, and then use the definition of f, to show that both terms are less than ¢.

Let € > 0. Look at the two terms in

[fu(2) = f(@)| < [fa(@) = fz))] + [f(25) = f(=)]-

The second is smaller than ¢ if v € I; because then 0 < z;—x < x;—x,;_1| = % < §. But also the first is

then smaller than e, because | fn(x) = f(;)| = | fn(2) = fo(25)] < [fu(zj 1) = falz;)] = |f(2j-1) = f(z;)]
and |z; — xj_1| = 2 < §. This proves the claim.

Use (b) to show that f, — f uniformly on [0, 1].

Let € > 0. Choose N > %, 0 from the definition of uniform continuity of f, and use (b). Then for all
x € [0,1] we have

n>N — n>% e fule) — )] < 2.

This proves
Ves0INeN Vaco,) : > N = [fu(z) — f(2)] < 26,

the definition of uniform convergence with < € replaced by < 2e. The 2-trick completes the proof.



