Mathematical Analysis, Final Exam

Lecturer: Joost Hulshof

Exercises 1,2,3,5 count for 6 points each, 4 counts for 3 points, 3 points for free. Divide by 3.

Question 1. (2+1+3) In this exercise you will have to use the Banach Contraction Theorem in C([0,1]).

a) Show that the function $g: \mathbb{R} \to [0,1]$ defined by

$$g(x) = \frac{1}{1+x^2}$$

is Lipschitz continuous with Lipschitz constant L=1. Hint: factorise g(x)-g(y). You may use without proof that

$$-\frac{1}{2} \le \frac{x}{1+x^2} \le \frac{1}{2}.$$

We have

$$g(x) - g(y) = \frac{1}{1+x^2} - \frac{1}{1+y^2} = \frac{y^2 - x^2}{(1+x^2)(1+y^2)} = \frac{x+y}{(1+x^2)(1+y^2)} (y-x),$$

and

$$\left| \frac{x+y}{(1+x^2)(1+y^2)} \right| \leq \frac{|x|}{(1+x^2)(1+y^2)} + \frac{|y|}{(1+x^2)(1+y^2)} \leq \frac{|x|}{1+x^2} + \frac{|y|}{1+y^2} \leq \frac{1}{2} + \frac{1}{2},$$

so $|g(x) - g(y)| \le |x - y|$ for all $x, y \in \mathbb{R}$.

- b) Prove that g is uniformly continuous. Specify the choice of $\delta > 0$ in the definition for given $\varepsilon > 0$. Let $\varepsilon > 0$. Use the same estimate or the statement in (a). Since $|g(x) - g(y)| \le |x - y|$ the choice $\delta = \varepsilon$ does the job: $|x - y| < \delta = \varepsilon$ implies that $|g(x) - g(y)| \le |x - y| < \varepsilon$.
- c) Prove that the integral equation

$$f(x) = \int_0^x \frac{1}{(1+s)(1+f(s)^2)} ds$$
 for all $x \in [0,1]$

has a unique solution f in C([0,1]). Use the right hand side to define a new function, say F, by

$$F(x) = \int_0^x \frac{1}{(1+s)(1+f(s)^2)} ds \quad \text{for all} \quad x \in [0,1].$$

Since the integrand is bounded, by 1 in fact, we have, using the "triangle inequality" for integrals,

$$|F(x) - F(y)| = \left| \int_{y}^{x} \frac{1}{(1+s)(1+f(s)^{2})} \, ds \right| \le \left| \int_{y}^{x} \left| \frac{1}{(1+s)(1+f(s)^{2})} \right| \, ds \right| \le \left| \int_{y}^{x} 1 \, ds \right| = |x-y|$$

so f is Lipschitz continuous with Lipschitz constant 1. In particular $F \in C([0,1])$ and the map Φ is well defined by

$$f \xrightarrow{\Phi} F$$
 from $C([0,1])$ to $C([0,1])$.

To see if Φ is a contraction we look at $F = \Phi(f)$ and $G = \Phi(g)$. The difference F - G is defined by (F - G)(x) = F(x) - G(x) =

$$\int_0^x \frac{1}{(1+s)(1+f(s)^2)} \, ds - \int_0^x \frac{1}{(1+s)(1+g(s)^2)} \, ds = \int_0^x \frac{1}{1+s} \left(\frac{1}{1+f(s)^2} - \frac{1}{1+g(s)^2} \right) \, ds,$$

so by (a) and the "triangle inequality" for integrals again

$$|(F - G)(x)| \le \int_0^x \frac{1}{1+s} |f(s) - g(s)| \, ds \le \int_0^x \frac{1}{1+s} \, d(f,g) \, ds \le \int_0^1 \frac{1}{1+s} \, ds \, d(f,g) = \ln 2 \, d(f,g)$$

for all $x \in [0,1]$ so $d(\Phi(f), \Phi(g)) \le \ln 2 d(f,g)$ for all $f,g \in C([0,1])$. Thus Φ is a contraction on the complete metric space C([0,1]) and therefore $f = \Phi(f)$ has a unique solution in C([0,1]).

Question 2. (2+2+2) The differential equation p''(x) = p(x) has a power series solution which is convergent for every $x \in \mathbb{R}$ and satisfies the conditions p(0) = 1 and p'(0) = 0.

a) Show that it is of the form

$$p(x) = \sum_{n=0}^{\infty} a_n x^{2n}$$
 and find an expression for a_n .

Write

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \alpha_4 x^4 + \alpha_5 x^5 + \alpha_6 x^6 + \cdots,$$

then

$$p'(x) = \alpha_1 + 2\alpha_2 x + 3\alpha_3 x^2 + 4\alpha_4 x^3 + 5\alpha_5 x^4 + 6\alpha_6 x^5 + 7\alpha_7 x^6 + \cdots$$

$$p''(x) = 2\alpha_2 + 3 \times 2\alpha_3 x + 4 \times 3\alpha_4 x^2 + 5 \times 4\alpha_5 x^3 + 6 \times 5\alpha_6 x^4 + 7 \times 6\alpha_7 x^5 + 8 \times 7\alpha_8 x^4 + \cdots,$$

so p''(x) = p(x) gives, comparing the coeffcients,

$$2\alpha_2 = \alpha_0$$
, $4 \times 3\alpha_4 = \alpha_2$, $6 \times 5\alpha_6 = \alpha_4$, $8 \times 7\alpha_8 = \alpha_6$,

$$2\alpha_3 = \alpha_1$$
, $5 \times 4\alpha_5 = \alpha_3$, $7 \times 6\alpha_7 = \alpha_5$, $9 \times 8\alpha_9 = \alpha_7$

and so on. Since $\alpha_0 = p(0) = 1$ and $\alpha_1 = p'(0) = 0$ it follows that $0 = \alpha_1 = \alpha_3 = \alpha_5 = \alpha_7 = \cdots$, and

$$\alpha_2 = \frac{1}{2}, \quad \alpha_4 = \frac{1}{4 \times 3} \alpha_2 = \frac{1}{4!}, \quad \alpha_6 = \frac{1}{6 \times 5} \alpha_4 = \frac{1}{6!}, \dots,$$

SO

$$p(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \text{ i.e. } a_n = \frac{1}{(2n)!}.$$

- b) Define q(x) by q(x) = p'(x). Show that the derivative of $p(x)^2 q(x)^2$ is zero for all $x \in \mathbb{R}$.
 - With q(x) = p'(x) it follows from the differential equation that q' = p'' = p. The Leibniz rule (which we proved for power series first) gives that the derivative of p^2 is p'p + pp' = 2pp', a special case of the chain rule. You can also directly use that 2pp' is the derivative of p^2 . Likewise the derivative of q^2 is 2qq' = 2p'p'' = 2p'p. So p^2 and q^2 have the same derivative and thus the derivative of $p^2 q^2$ is identically equal to zero.
- c) Formulate the theorem that implies that $p(x)^2 q(x)^2$ is constant, and determine the constant.
 - The fact that $f(x) = p(x)^2 q(x)^2$ is constant follows from the differentiability of f in every \mathbb{R} and the mean value theorem applied to f on [a,b]. Indeed, the theorem says, for $f \in C([a,b])$ with f differentiable on (a,b), that $f(b) f(a) = f(\xi)(b-a)$ for some $\xi \in (a,b)$. For the f under consideration it follows that f(b) f(a) = 0 for every a and b with a < b. Thus f(b) = f(0) for every b > 0 and f(a) = f(0) for every a < 0. So $f(x) = f(0) = p(0)^2 q(0)^2 = 1$ for all $x \in \mathbb{R}$.

Question 3. (1+2+3) Let $f:[0,1] \to [-1,1]$ be given by

$$f(x) = \begin{cases} 0 & \text{for } x = 0 \\ \sin \frac{1}{x} & \text{for } x \neq 0 \end{cases}$$
. Recall that we write, for a partition $0 \le x_0 \le x_1 \le \dots \le x_N = 1$,

$$I_k = [x_{k-1}, x_k], \quad m_k = \inf_{I_k} f, \quad M_k = \sup_{I_k} f, \quad \overline{S} = \sum_{k=1}^N M_k (x_k - x_{k-1}), \quad \underline{S} = \sum_{k=1}^N m_k (x_k - x_{k-1}).$$

- a) Let $\varepsilon > 0$ and $a \in (0, 1]$. Prove that f is Riemann integrable on [a, 1], for instance by using a theorem. The function f is continuous on [a, 1]. Therefore it integrable on [a, 1].
- b) Use (a) and another theorem to prove the existence of such a partition with $x_0 = a$ for which $\overline{S} \underline{S} < \varepsilon$. Since f is integrable on [a, 1] there exists for every $\varepsilon > 0$ a partition $a = x_0 \le x_1 \le \cdots \le x_N = 1$ of [a, 1] such that $\overline{S} - \underline{S} < \varepsilon$, by the ε -criterium for integrability of f on [a, 1].
- c) Prove that f is Riemann integrable on [0,1]. Hint¹: start with $\varepsilon > 0$ and choose $x_0 = 0 < x_1 = a < \varepsilon$. To verify the ε -criterion for integrability of f on [0,1] let $\varepsilon > 0$. Choose $x_0 = 0 < x_1 = a < \varepsilon$. Then use (b) to conclude the existence of a partition $a = x_1 \le \cdots \le x_N = 1$ of [a,1] with

$$\sum_{k=2}^{N} M_k (x_k - x_{k-1}) - \sum_{k=2}^{N} m_k (x_k - x_{k-1}) < \varepsilon.$$

Then

$$\sum_{k=1}^{N} M_k (x_k - x_{k-1}) - \sum_{k=1}^{N} m_k (x_k - x_{k-1}) = M_1 a + \sum_{k=2}^{N} M_k (x_k - x_{k-1}) - m_1 a - \sum_{k=2}^{N} m_k (x_k - x_{k-1})$$

$$<(M_1-m_1)a+\varepsilon \le 2a+\varepsilon < 2\varepsilon+\varepsilon=3\varepsilon.$$

in which we used that $-1 \le m_1 \le M_1 \le 1$ whence $M_1 - m_1 \le 2$. Thus we have for very $\varepsilon > 0$ the existence of a partition of [0,1] with $\overline{S} - \underline{S} < 3\varepsilon$. By the ε -criterion and a 3-trick the function f is then integrable on [0,1].

Question 4. (3) Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{for } x = 0\\ x(1 + \sqrt{|x|} \sin \frac{1}{x}) & \text{for } x \neq 0 \end{cases}$$

Prove that f is differentiable in x=0: give the linear approximation of f(x) near x=0 and verify the ε - δ statement for the remainder term. Specify $\delta > 0$ for given $\varepsilon > 0$.

We recognise x as the linear approximation for x close to 0. Then f(x) = x + R(x) with

$$R(x) = x\sqrt{|x|}\sin\frac{1}{x}$$

for $x \neq 0$. Let $\varepsilon > 0$. Then

$$|R(x)| = |x\sqrt{|x|}\sin\frac{1}{x}| \le \sqrt{|x|}|x| < \varepsilon|x|$$

if $x \neq 0$ and $\sqrt{|x|} < \varepsilon$. So choose $\delta > 0$ such that $\sqrt{\delta} = \varepsilon$. For $0 < |x| < \delta$ it follows that

$$R(x) \le \sqrt{\delta} |x| = \varepsilon |x|.$$

This completes the proof.

¹I changed the hint, $< \varepsilon$ instead of $< \frac{\varepsilon}{2}$

Question 5. (2+2+2) Let $f:[0,1]\to\mathbb{R}$ be defined by $f(x)=\sqrt{x}$. For $n\in\mathbb{N}$ define $f_n:[0,1]\to\mathbb{R}$ by

$$f_n(x_j) = f(x_j)$$
 for $x_j = \frac{j}{n}$, $j = 0, 1, 2, \dots, n$,

and by f_n being linear on every interval $I_j = \left[\frac{j-1}{n}, \frac{j}{n}\right]$.

a) Sketch the graph of f_4 and explain why f_4 is Lipschitz continuous with Lipschitz constant 2. Unfortunately there was a mistake in the exam, of course the Lipschitz constant is not $\frac{1}{2}$.

Draw the piecewise linear curve through $(0,0), (\frac{1}{4},\frac{1}{2}), (\frac{1}{2},\sqrt{\frac{1}{4}}), (\frac{3}{4},\sqrt{\frac{3}{4}}), (0,1)$. On the first interval $[0,\frac{1}{4}]$ the slope is 2, which is larger than the slope on each of the intervals $[\frac{1}{4},\frac{1}{2}], [\frac{1}{2},\frac{3}{4}], [\frac{3}{4},1]$. So for x,y both in one of the intervals $I_1=[0,\frac{1}{4}], I_2=[\frac{1}{4},\frac{1}{2}], I_3=[\frac{1}{2},\frac{3}{4}], I_4=[\frac{3}{4},1]$ we have $|f(x)-f(y)|\leq 2|x-y|$. If not choose, then x and y are in two different intervals. If these are I_1 and I_2 we estimate

$$|f(x) - f(y)| \le |f(x) - f(\frac{1}{4})| + |f(\frac{1}{4}) - f(y)| \le 2|x - \frac{1}{4}| + 2|\frac{1}{4} - y| = 2|x - y|,$$

and likewise if these are I_2 and I_3 , or I_3 and I_4 , with $\frac{1}{4}$ replaced by $\frac{1}{2}$ or $\frac{3}{4}$. If these are $x \in I_1$ and $y \in I_3$, then we choose two intermediate points to conclude

$$|f(x) - f(y)| \leq |f(x) - f(\frac{1}{4})| + |f(\frac{1}{4}) - f(\frac{1}{2})| + |f(\frac{1}{2}) - f(y)| \leq 2|x - \frac{1}{4}| + 2|\frac{1}{4} - \frac{1}{2}| + 2|\frac{1}{2} - y| = 2|x - y|.$$

If these are $x \in I_1$ and $y \in I_4$ then

$$|f(x) - f(y)| \le |f(x) - f(\frac{1}{4})| + |f(\frac{1}{4}) - f(\frac{1}{2})| + |f(\frac{1}{2}) - f(\frac{3}{4})| + |f(\frac{3}{4}) - f(y)| \le \dots = 2|x - y|.$$

Likewise in al remaining cases.

b) For $\varepsilon > 0$ let $\delta > 0$ be given by the definition of uniform continuity of f, i.e.

$$\forall_{x,y\in[0,1]}: |x-y|<\delta \implies |f(x)-f(y)|<\varepsilon,$$

and let $n \in \mathbb{N}$ satisfy $n > \frac{1}{\delta}$. Prove that

$$|f_n(x) - f(x)| < 2\varepsilon$$

for all $x \in [0,1]$. Hint: given $x \in [0,1]$ use the inequality

$$|f_n(x) - f(x)| \le |f_n(x) - f(x_i)| + |f(x_i) - f(x)|,$$

choose j such that $x \in I_j$, and then use the definition of f_n to show that both terms are less than ε . Let $\varepsilon > 0$. Look at the two terms in

$$|f_n(x) - f(x)| \le |f_n(x) - f(x_i)| + |f(x_i) - f(x)|.$$

The second is smaller than ε if $x \in I_j$ because then $0 \le x_j - x \le x_j - x_{j-1}| = \frac{1}{n} < \delta$. But also the first is then smaller than ε , because $|f_n(x) - f(x_j)| = |f_n(x) - f_n(x_j)| \le |f_n(x_{j-1}) - f_n(x_j)| = |f(x_{j-1}) - f(x_j)|$ and $|x_j - x_{j-1}| = \frac{1}{n} < \delta$. This proves the claim.

c) Use (b) to show that $f_n \to f$ uniformly on [0,1].

Let $\varepsilon > 0$. Choose $N > \frac{1}{\delta}$, δ from the definition of uniform continuity of f, and use (b). Then for all $x \in [0,1]$ we have

$$n \ge N \implies n > \frac{1}{\delta} \implies |f_n(x) - f(x)| \le 2\varepsilon.$$

This proves

$$\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} \forall_{x\in[0,1]} : n \ge N \implies |f_n(x) - f(x)| \le 2\varepsilon,$$

the definition of uniform convergence with $\langle \varepsilon \rangle$ replaced by $\langle 2\varepsilon \rangle$. The 2-trick completes the proof.