Vrije Universiteit Amsterdam Mathematical Analysis, (rehearsal) Exam 1 March 13 2019 Docent: Joost Hulshof Write the calculations and arguments that lead to your answers. Motivate your answers (mention theorems used). You can use earlier statements, even if you failed to prove them. NO calculators/computers/phones allowed. Your grade will be $1 + \frac{\text{your total score}}{\text{total maximal score}}$ ## **Problem 1.** Some basic theory. - a) Formulate the Archimedean Principle. - b) Give the definition of a Cauchy sequence. - c) Give the definition of a convergent sequence. - d) Formulate the Bolzano Weierstrass Theorem. **Problem 2.** Consider the sequence x_n indexed by $n \in \mathbb{N}$ defined by $$x_n = \frac{1}{\sqrt{n}}.$$ - a) Prove that x_n is convergent. - b) Prove that 0 is the largest lower bound for the sequence x_n . **Problem 3.** For $a \in (0, \frac{1}{4})$ define the sequence x_n by $x_0 = 1$ and $$x_n = 1 - \frac{a}{x_{n-1}}.$$ - a) Use induction to show that $x_n > \frac{1}{2}$ for all $n \in \mathbb{N}$. - b) Use induction to show that $x_n < x_{n-1}$ for all $n \in \mathbb{N}$. - c) Prove that the sequence x_n is convergent. - d) Determine the limit of the sequence x_n . **Problem 4.** For $x \in \mathbb{R}$ with x > 0 let $$f(x) = 2 + \frac{1}{x}.$$ - a) Show that $f:[2,\infty)\to[2,\infty)$ is a contraction. - b) Define the sequence x_n by $x_0 = 1$ and $$x_n = 2 + \frac{1}{x_{n-1}}$$. Why is this sequence convergent? What is its limit? **Problem 5.** Let $f:[0,1] \to \mathbb{R}$ be continuous. Explain why the maximum norm $$|f| = \max_{0 \le x \le 1} |f(x)|$$ is well defined. **Problem 6.** Let $f_n:[0,1]\to\mathbb{R}$ be defined by $f_n(x)=x^n$. Explain why f_n is not a Cauchy sequence in the maximum norm.