
Machine Learning 2020
Practice Exam A

February 21, 2020

This document provides a detailed explanation of the exam structure with
some example questions for each category. It is not an example of what the
actual exam will look like. For that, see Practice Exam B.

Some tips:

• Pay particular attention to the application questions. These are the
most difficult, but they are also the most predictable. If you have a
look at them early on, you should know what to pay attention to as
the course progresses.

• The exam contains easy questions as well as tricky ones. Don’t make
the mistake of suspecting trick questions when something seems too
good to be true. Some questions are just easy.

• Focus on revising for the recall questions and the application ques-
tions. If you practice these well, the exam should be easy to pass.

• Note that application questions follow a fixed pattern. If you run out
of practice questions, you can easily create your own examples.

• The exam is only two hours. To get a good grade you should practice
enough to answer questions quickly as well as accurately.

• The version of this document with answers contains many explana-
tions and additional tips, so be sure to read that one too.
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1 Recall questions

Approximately one third of the exam will be recall questions. These are
questions that ask for a simple detail from a single slide without too much
depth. If you have seen and understood every slide of every lecture once,
you should be able to answer the majority of recall questions correctly.
These questions are never phrased to trick you or to catch you out.

Examples of recall questions

1. What separates offline learning from reinforcement learning?
A In reinforcement learning the training labels are reinforced through
boosting.
B Offline learning can be done without connection to the internet. Rein-
forcement learning requires reinforcement from a separate server.
C In reinforcement learning, the learner takes actions and receives feed-
back from the environment. In offline learning we learn from a fixed
dataset.
D Reinforcement learning uses backpropagation to approximate the gradi-
ent, whereas offline learning uses symbolic computation.

2. The most important rule in machine learning is “never judge your
performance on the training data.” If we break this rule, what can
happen as a consequence?
A The loss surface no longer provides an informative gradient.
B We get cost imbalance.
C We end up choosing a model that overfits the training data.
D We commit multiple testing.

3. We have a classifier c and a test set. Which is true?
A To compute the precision for c on the test set, we must define how to
turn it into a ranking classifier.
B To compute the false positive rate for c on the test set, we must define
how to turn it into a ranking classifier.
C To compute the confusion matrix for c on the test set, we must define
how to turn it into a ranking classifier.
D To compute the ROC area under the curve for c on the test set, we must
define how to turn it into a ranking classifier.

4. Testing too many times on the test set increases the chance of ran-
dom effects influencing your choice of model. Nevertheless, we may
need to test many different models and many different hyperparame-
ters. What is the solution suggested in the lectures?
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A To withhold the test set, and use a train/validation split on the remain-
der to evaluate model choices and hyperparameters.
B To normalize the the data so that they appear normally distributed.
C To use bootstrap sampling to gauge the variance of the model.
D To use a boosted ensemble, to reduce the variance of the model, and
with it, the probability of random effects.
This is discussed in lecture 3. It is a crucial part of any machine learn-
ing project.

2 Combination questions

Approximately one third of the exam will be combination questions. These
are slightly deeper than simple recall questions. They may, for instance.
require you to

• combine pieces of information from different parts of the lecture,

• Answer a question posed in the negative, i.e. “Which is not one of the
reasons that . . . ?”,

• recognise that an answer that seems correct is actually not true. We
won’t write trick question for the sake of tricking you, but sometimes
it’s important to include common misconceptions.

The difference between recall and combination questions is a little fuzzy,
but hopefully, you can infer the general idea from the examples below.

Examples of combination questions

5. Different features in our data may have wildly different scales: a per-
son’s age may fall in the range from 0 to 100, while their savings can
fall in the range from 0 to 100 000. For many machine learning algo-
rithms, we need to modify the data so that all features have roughly
the same scale. Which is not a method to achieve this?
A Imputation
B Standardization
C Normalization
D Principal Component Analysis

6. The variational autoencoder adapts the regular autoencoder in a
number of ways. Which is not one of them?
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A It adds a sampling step in the middle.
B It makes the outputs of the encoder and decoder parameters of proba-
bility distributions.
C It adds a loss term to ensure that the latent space is laid out like a stan-
dard normal distribution.
D It adds a discriminator that learns to separate generated examples from
those in the dataset.

7. We have two discrete random variables: A with outcomes 1, 2, 3 and
B with outcomes a,b, c. We are given the joint probability p(A,B) in
a table, with the outcomes of A enumerated along the rows (verti-
cally), and the outcomes of B enumerated along the columns (hori-
zontally). How do we compute the probability p(A = 1 | B = a)?
A We find the probability in the first column and the first row.
B We find the probability in the first column and the first row, and divide
it by the sum over the first column.
C We find the probability in the first column and the first row, and divide
it by the sum over the first row.
D We sum the probabilities over the first column and the first row.

8. Why is gradient descent difficult to apply in a reinforcement learning
setting?
A The loss surface is flat in most places, so the gradient is zero almost ev-
erywhere.
B The backpropagation algorithm doesn’t apply if the output of a model is
a probability distribution.
C There is a non-differentiable step between the model input and the
model output.
D There is a non-differentiable step between the model output and the
reward.

9. The squared error loss function looks like this:
∑
i(yi − ti)

2, where
the sum is over all instances, yi is the model output for instance i
and ti is the training label. Which is not a reason for squaring the
difference between the two?
A It ensures that negative and positive differences don’t cancel out in the
sum.
B It ensures that large errors count very heavily towards the total loss.
C When used in classification, it ensures that points near the decision
boundary weigh most heavily.
D It is a consequence of assuming normally distributed errors, and deriv-
ing the maximum likelihood solution.
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3 Application questions

The final third of the exam will be application questions. These are ques-
tions that ask you to apply an algorithm, perform some computation or fol-
low some derivation. These are the questions which you’ll need to actively
practice for.

All application questions follow a predetermined pattern and are prac-
ticed in the homework exercises.

There are 10 types, with a sequence of about three questions for each
type. For each exam we will select some types, and adapt the specifics
of the question but not the structure. For instance, we may change the
dataset or change which parameter we take a derivative for.

The following is a complete list of all types. If you master all 10 types
given below, there will be no surprises on the exam.

1. Find the gradient For a simple (usually polynomial) model, work out
the derivative with respect to one of the parameters.

2. Find a ranking Given a simple dataset, and a linear classifier work out
a ranking of the instances, and identify the number of ranking errors
and the coverage.

3. Entropy For a given set of probability distributions, compute the en-
tropy and the cross-entropy.

4. Scalar backpropagation Apply the backpropagation algorithm to a
complicated scalar function. Break the function up into modules and
use the local derivatives to compute the derivative for a particular
input.

5. Decision trees Given a dataset, work out which feature makes for the
best split.

6. Evidence lower bound Work through the derivation of the evidence
lower bound (as used in the EM and VAE algorithms) and identify the
missing steps.

7. Naive Bayes Given a dataset with categorical variables, compute the
probabilities that a naive Bayes classifier assigns to each class, with
and without smoothing.

8. The kernel trick Work out the explicit feature space for a given kernel.

9. Matrix backpropagation For a given module in a matrix-based auto-
matic differentiation system, work out the Jacobian/vector products
required to implement the backward pass.

5



10. Lagrange multipliers Work out the optimum for a constrained opti-
mization problem, using Lagrange multipliers.

In some cases there are questions included to check that you understand
what you’re doing and what it means, in addition to knowing how to do it.
These will be entirely different in the exam.

Examples of application questions

type: find the gradient

We want to train the following model:

yi = −vxi
2 +wxi + b

with parameters v, w and b, where xi and yi are scalars. the dataset pro-
vides target values ti. We derive the gradient of the loss with respect to b
as follows:

∂1
2

∑
i (yi − ti)

2

∂b
=

1

2

∂
∑
i (yi − ti)

2

∂b
(1)

=
1

2

∑
i

∂ (yi − ti)
2

∂b
(2)

=
1

2

∑
i

∂ (yi − ti)
2

∂ (yi − ti)

∂ (yi − ti)

∂b
(3)

=
1

2

∑
i

2 (yi − ti)
∂ (yi − ti)

∂b
(4)

10. To get from line (2) to line (3), we use the
A Chain rule
B Product rule
C Constant factor rule
D Sum rule

11. To get from line (1) to line (2), we use the
A Chain rule
B Product rule
C Constant factor rule
D Sum rule

12. Fill in the definition of yi and work out the derivative with respect to
b. Which is the correct result?
A 1

2

∑
i

(
−vxi

2 +wxi + b− ti
)

B
∑
i

(
−vxi

2 +wxi + b− ti
)

C 1
2

∑
i xi

(
−vxi

2 +wxi + b− ti
)

D
∑
i xi

(
−vxi

2 +wxi + b− ti
)
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type: find a ranking

We have the following training set:

x1 x2 label
a 0 1 Neg
b 2 2 Neg
c 1 4 Neg
d 2 5 Neg
e 3 6 Pos
f 6 8 Pos
g 5 3 Pos
h 8 7 Pos

For the following questions, it helps to draw the data and the classification
boundary in feature space.
We use a linear classifier defined by

c(x1, x2) =

{
Pos if 0 · x1 + x2 − 2 > 0

Neg otherwise.

13. If we turn c into a ranking classifier, how does it rank the points,
from most Negative to most Positive?
A a b c d e f g h
B a b g c d e h f
C a b g c d h e f
D a c b d e g f h

14. How many ranking errors does the classifier make?
A None
B 1
C 2
D 3

15. If we draw a coverage matrix (as done in the slides), what proportion
of the cells will be red?
A 3

15 B 6
15 C 1

8 D 6
16

type: Entropy

Here are two distributions, p and q, on the members of a set X = {a,b, c,d}.
We will use binary entropy (i.e. computed with base-2 logarithms). Note
that in the computation of the entropy 0 · log2(0) = 0, but otherwise, log2 0
is undefined as usual.
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p q
a 1⁄4 0
b 1⁄4 1⁄4
c 1⁄4 1⁄4
d 1⁄4 1⁄2

16. What are their entropies?
A H(p) = 2, H(q) = 1
B H(p) = 2, H(q) = 1.5
C H(p) = 1, H(q) = 1
D H(p) = 1, H(q) = 1.5

17. What is the cross-entropy H(q,p)?
A H(q,p) = 1
B H(q,p) = 1.5
C H(q,p) = 2
D H(q,p) = 2.5

18. If you try to compute H(p,q), you’ll notice that something goes wrong.
What does this mean?
A As q(a) goes to zero, a’s codelength with code q goes to infinity. This
makes the expected codelength under the uniform distribution p infinite as
well.
B Because p is uniform, its expected codelength is always optimal under
any distribution.
C A standard (graphical) calculator does not have the precision to com-
pute the answer. In a python notebook, we would not have a problem.
D Because q(a) = 0 the expected codelength with code q, under distri-
bution q is not defined. This means that the resulting cross-entropy also
becomes undefined.

type: Backpropagation

NB: This question type is not just asking for a derivative (although the func-
tion may be simple enough for that). What we want is for you to apply the
backpropagation algorithm: that is, to work our the local derivatives symboli-
cally, and then do the rest numerically.

We will use the backpropagation algorithm to find the derivative of the
function

f(x) = sin (sin(x) cos(x))

with respect to x.
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First, we break the function up into modules:

f = sin(c)

c = . . .

b = . . .

a = sin(x)

19. What should be in the place of the dots?
A b = cos(x), c = ab
B b = cos(x), c = sin(x) cos(x)
C b = cos(c), c = ab
D b = cos(c), c = sin(x) cos(x)

20. For the backpropagation algorithm, we need to work out the local
derivatives symbolically. Which are the required local derivatives?
A ∂f/∂c, ∂c/∂a, ∂c/∂b, ∂a/∂x and ∂b/∂x
B ∂c/∂f, ∂a/∂c, ∂b/∂c, ∂x/∂a and ∂x/∂b
C ∂f/∂c, ∂f/∂a, ∂f/∂b and ∂f/∂x
D ∂c/∂f, ∂a/∂f, ∂b/∂f and ∂x/∂f

21. In terms of the local derivatives. Which is the correct expression for
the gradient ∂f/∂x?
A sin(c) [b cos(x) + a sin(x)]
B sin(c) [b cos(x) − a sin(x)]
C cos(c) [b cos(x) + a sin(x)]
D cos(c) [b cos(x) − a sin(x)]

type: Decision trees

Consider the following task. The aim is to predict the class y from the bi-
nary features x1, x2, x3 and x4.
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x1 x2 x3 x4 y

B A A A Yes
A A B A No
B A A A Yes
A A B A No
B B A A Yes
B B A A Yes
B A A B Yes
A B B B No
A A B B No
A B A B Yes
B B B B No
A B B B No

22. In standard decision tree learning (as explained in the lectures),
without pruning. Which would be the first feature chosen for a split?
A x1 B x2 C x3 D x4

23. If we remove that feature from the data, which would be chosen in-
stead?
A x1 B x2 C x3 D x4

Consider the following (partial) decision tree:
x1

x2

Yes ?

Yes

A

A B

B

We can place either x3 or x4 on the open node (indicated by the question
mark).

24. At this point, what is (approximately) the information gain for x3?
A 0 B 0.91 C 1.41 D 2.75

type: Evidence lower bound

NB: This question type involves filling in the blanks in a derivation. You are
free to just memorize the derivation, but note that half the points come from
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understanding what the derivation means.
The EM and VAE algorithms are both based on the following decom-

position.

L(q, θ) + KL(q,p) = Eq ln
p(x, z | θ)

q(z | x)
− Eq ln

p(z | x, θ)

q(z | x)

= Eq lnp(x, z | θ) − Eq lnq(z | x) − 〈a〉+ Eq lnq(z | x)
= Eq lnp(x, z | θ) − Eq lnp(z | x, θ)

= Eq ln
p(x, z | θ)

p(z | x, θ)

= Eq ln
p(z | x, θ)p(x | θ)

p(z | x, θ)

= Eq lnp(x | θ)

= 〈b〉

25. What should be in place of 〈a〉 and 〈b〉?
A 〈a〉 : Eq lnp(z | x, θ), 〈b〉 : lnp(x | θ)
B 〈a〉 : Eq lnp(z | x, θ), 〈b〉 : Eq lnp(x)
C 〈a〉 : Eq lnp(z, x | θ), 〈b〉 : lnp(x | θ)
D 〈a〉 : Eq lnp(z, x | θ), 〈b〉 : Eq lnp(x)

26. How is this derivation used in the EM algorithm?
A To maximize lnp(x | θ), we iterate between choosing θ to maximize
L(q, θ) and then choosing q to minimize KL(q,p).
B To maximize lnp(x | θ), we treat L(q, θ) as a lower bound and optimize
its parameters by backpropagation.
C To maximize L(q, θ) + KL(q,p) we rewrite it to lnp(x | θ) and use ran-
dom search to find the optimal θ.
D To maximize L(q, θ) + KL(q,p) we rewrite it to lnp(x | θ) and apply the
kernel trick to find the optimal θ.

The VAE requires further rewriting. To simplify notation, we will omit the
parameters θ.
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− lnpθ(x) > −L(q, θ) = 〈a〉
= −Eq lnp(x | z) − Eq lnp(z) + Eq lnq(z | x)

= −Eq lnp(x | z) + Eq ln
q(z | x)

p(z)

= −Eq lnp(x | z) − Eq ln
p(z)

q(z | x)

= −Eq lnp(x | z) + KL (q(z | x),p(z))
= −Eq lnp(x | z) + KL(q(z | x), 〈b〉)

27. What should be in place of 〈a〉 and 〈b〉?
A 〈a〉 : lnEqp(x, z) − lnEqq(z | x), 〈b〉 : N(0, I)
B 〈a〉 : − lnEqp(x, z) + lnEqq(z | x), 〈b〉 : N(0, I)
C 〈a〉 : lnEqp(x | z) − lnEqq(z | x), 〈b〉 : N(z, var(z))
D 〈a〉 : − lnEqp(x | z) + lnEqq(z | x), 〈b〉 : N(z, var(z))

28. Why do we use − lnp(x) instead of lnp(x)?
A To give us a reward function (where higher is better) which is the con-
vention in reinforcement learning.
B To give us a loss function (where lower is better), which is the conven-
tion in deep learning systems.
C To ensure that negative and positive errors don’t cancel out against one
another.
D To ensure that negative and positive errors do cancel out against one
another.

type: Naive Bayes

The following dataset represents a spam classification problem: we observe
8 emails and measure two binary features. The first is T if the word ”pill”
occurs in the e-mail (F otherwise) and the second is T if the word “meet-
ing” occurs.

“pill” “meeting” label
T F Spam
T F Spam
F T Spam
T F Spam
F F Ham
F F Ham
F T Ham
T T Ham
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We build a naive Bayes classifier on this data, as described in the lecture.
We estimate the class priors (p(Spam) and p(Ham)) from the data.

29. We observe one email that contains both words and one that contains
neither. Which class does the classifier assign to each?
A both words: Ham, neither word: Ham
B both words: Ham, neither word: Spam
C both words: Spam, neither word: Ham
D both words: Spam, neither word: Spam

30. We observe an email e that contains the word “pill”, but not the word
“meeting”. What probabilities does the classifier assign?
A p(Ham | e) = 9/11, p(Spam | e) = 2/11
B p(Ham | e) = 2/11, p(Spam | e) = 9/11
C p(Ham | e) = 9/32, p(Spam | e) = 2/32
D p(Ham | e) = 2/32, p(Spam | e) = 9/32

We add pseudo-observations to the data to deal with unseen emails. The
pseudo-observations have the same weight as the normal ones. Compute
how the judgments change.

31. We observe one email that contains both words and one that contains
neither. Which class does the smoothed classifier assign to each?
A both words: Ham, neither word: Ham
B both words: Ham, neither word: Spam
C both words: Spam, neither word: Ham
D both words: Spam, neither word: Spam

32. We observe an email that contains the word “pill”, but not the word
“meeting”. What probabilities does the smoothed classifier assign?
A p(Ham | e) = 16/22, p(Spam | e) = 6/22
B p(Ham | e) = 6/22, p(Spam | e) = 16/22
C p(Ham | e) = 16/72, p(Spam | e) = 6/72
D p(Ham | e) = 6/72, p(Spam | e) = 16/72

type: the kernel trick

Consider the following kernel:

k(x,y) = (2 · xTy+ 3)2

We apply this kernel to two-dimensional vectors

x =

(
1
2

)
,y =

(
3
1

)
.
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33. Which is correct?

A k(x,y) =

(
81
49

)
B k(x,y) =

(
49
81

)
C k(x,y) = 169
D k(x,y) = 144

34. Assuming two-dimensional inputs, what is the explicit feature space
x ′ for which k computes the dot product?

A x ′ =



2
√
2 · x12

2
√
2 · x22
2 · x1x2√
3 · x1√
3 · x2
3

 B x ′ =



8 · x12
8 · x22
4 · x1x2
9 · x1
9 · x2
9



C x ′ =



2 · x12
2 · x22

2
√
2 · x1x2

2
√
3 · x1

2
√
3 · x2
3

 D x ′ =



4 · x12
4 · x22
8 · x1x2

12 · x1
12 · x2
9


We would like a kernel for the feature space

x =



c1 · x12
c2 · x22
c3 · x1x2
c4 · x1
c5 · x2
c6

 ,

where c1, . . . , c6 are constants.

35. Which kernel does the job?

A k(x,y) = (xTy)2

B k(x,y) = (xTy+ 1)
C k(x,y) = (xTy+ 1)2

D k(x,y) = (xTy+ 1)3

type: Matrix backpropagation

We have a module f in an automatic differentiation (AD) system (as dis-
cussed in the lectures) which computes the following function (its forward
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pass):
fw(x) = x2w

where x is a scalar and w is a vector. Note that this makes f a function
from a scalar to a vector.

We will assume that the AD engine will work out the downstream
derivatives for us. Given these, we will need to compute the derivatives
over the argument x and over the parameters w. Let the vector f represent
the output of our function.

36. What is the local scalar derivative ∂fk/∂x?
A ∂fk/∂x = 2x wk

B ∂fk/∂x = x wk

C ∂fk/∂x = 2x2 wk

D ∂fk/∂x = x
2 wk

37. Our AD engine provides a vector d such that di = ∂L/∂fi. What
should the module return as the gradients of x?

A x2d

B 2xd
C 2xdTw
D x2dTw

38. What is the local scalar derivative ∂fk/∂wi?

A ∂fk/∂wi = x
2

B ∂fk/∂wi = 0
C ∂fk/∂wi = x

2 if k = i, 0 otherwise
D ∂fk/∂wi = 0 if k = i, x2 otherwise

39. Given d with di = ∂L/∂di, what should the module return as the
gradients of w?

A x2d

B 2xd
C 2xdTw
D x2dTw

type: Lagrange multipliers

Consider the following optimization problem:

argmin
x,y

ax+ by

such that x2 + y2 = 1,

where a, and b are non-zero constants.
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40. Which is the correct Lagrangian for this problem?
A L(x,y) = ax+ by
B L(x,y) = 2x+ 2y
C L(x,y,α) = ax+ by+ αx2 + αy2 − α
D L(x,y,α) = a+ b+ 2αx+ 2αy− α

41. Which is correct?
A ∂L/∂x = b+ 2αy
B ∂L/∂x = b+ 2αy2

C ∂L/∂y = b+ 2αy
D ∂L/∂y = b+ 2αy2

42. Let n =
√
a2 + b2 What are (all) the solutions?

A x = a/n,y = −b/n
B x = a/n,y = −b/n and x = −a/n,y = b/n
C x =

√
a/n,y =

√
b/n and x = a/n,y = b/n

D x = a/n,y = b/n and x = −a/n,y = −b/n

43. Could we also find these solutions by using standard gradient de-
scent with the gradient of the Lagrangian?
A Yes, this is how SVMs with kernels are commonly solved.
B Yes, this is how SVMs are commonly solved, but in that case the kernel
trick cannot be applied.
C No, the solutions are saddle-points, not optima.
D No, the gradient is not zero at the solutions.
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