Machine Learning 2020

Practice Exam A
WITH ANSWERS

March 19, 2020

This document provides a detailed explanation of the exam structure with
some example questions for each category. It is not an example of what the
actual exam will look like. For that, see Practice Exam B.

Some tips:

Pay particular attention to the application questions. These are the
most difficult, but they are also the most predictable. If you have a
look at them early on, you should know what to pay attention to as
the course progresses.

The exam contains easy questions as well as tricky ones. Don’t make
the mistake of suspecting trick questions when something seems too
good to be true. Some questions are just easy.

Focus on revising for the recall questions and the application ques-
tions. If you practice these well, the exam should be easy to pass.

Note that application questions follow a fixed pattern. If you run out
of practice questions, you can easily create your own examples.

The exam is only two hours. To get a good grade you should practice
enough to answer questions quickly as well as accurately.



1 Recall questions

Approximately one third of the exam will be recall questions. These are
questions that ask for a simple detail from a single slide without too much
depth. If you have seen and understood every slide of every lecture once,
you should be able to answer the majority of recall questions correctly.
These questions are never phrased to trick you or to catch you out.

Examples of recall questions

1. What separates offline learning from reinforcement learning?

A In reinforcement learning the training labels are reinforced through
boosting.

B Offline learning can be done without connection to the internet. Rein-
forcement learning requires reinforcement from a separate server.

C In reinforcement learning, the learner takes actions and receives feed-
back from the environment. In offline learning we learn from a fixed
dataset. v/

D Reinforcement learning uses backpropagation to approximate the gradi-
ent, whereas offline learning uses symbolic computation.

See lecture 1. Note that the incorrect questions are phrased to sound
reasonable if you don’t know the specifics, but are mostly nonsense,
if you know what these concepts mean.

2. The most important rule in machine learning is “never judge your
performance on the training data.” If we break this rule, what can
happen as a consequence?

A The loss surface no longer provides an informative gradient.
B We get cost imbalance.

C We end up choosing a model that overfits the training data.v’
D We commit multiple testing.

Introduced in lecture 1, also discussed in lecture 3.

3. We have a classifier ¢ and a test set. Which is true?
A To compute the precision for ¢ on the test set, we must define how to
turn it into a ranking classifier.
B To compute the false positive rate for c on the test set, we must define
how to turn it into a ranking classifier.
C To compute the confusion matrix for ¢ on the test set, we must define
how to turn it into a ranking classifier.
D To compute the ROC area under the curve for ¢ on the test set, we must
define how to turn it into a ranking classifier.v’

The first three can be computed for any binary classifier. For the ROC
AUC, however, we need a ranking of the instances in the test set from



most negative to most positive. See lecture 3 and homework 3.

. Testing too many times on the test set increases the chance of ran-
dom effects influencing your choice of model. Nevertheless, we may
need to test many different models and many different hyperparame-
ters. What is the solution suggested in the lectures?

A To withhold the test set, and use a train/validation split on the remain-
der to evaluate model choices and hyperparameters. v/

B To normalize the the data so that they appear normally distributed. Nor-
malization will not help with this problem.

C To use bootstrap sampling to gauge the variance of the model. Boot-
strap sampling (lecture 3 and lecture 10) will help you gauge the variance.
But that will not solve this problem.

D To use a boosted ensemble, to reduce the variance of the model, and
with it, the probability of random effects. An ensemble (lecture 10) can
increase performance by reducing bias and variance, but this does not
help with the problem of test-set reuse (lecture 3). It’s just another way

of building a model.

2 Combination questions

Approximately one third of the exam will be combination questions. These
are slightly deeper than simple recall questions. They may, for instance.
require you to

* combine pieces of information from different parts of the lecture,

* Answer a question posed in the negative, i.e. “Which is not one of the
reasons that ... ?”,

* recognise that an answer that seems correct is actually not true. We
won’t write trick question for the sake of tricking you, but sometimes
it’s important to include common misconceptions.

The difference between recall and combination questions is a little fuzzy,
but hopefully, you can infer the general idea from the examples below.

Examples of combination questions

5. Different features in our data may have wildly different scales: a per-
son’s age may fall in the range from O to 100, while their savings can
fall in the range from O to 100 000. For many machine learning algo-
rithms, we need to modify the data so that all features have roughly
the same scale. Which is not a method to achieve this?



A Imputation v/

B Standardization

C Normalization

D Principal Component Analysis

This question is phrased negatively. This usually makes it more diffi-
cult to guess. If you know that imputation is a way to deal with miss-
ing data (not normalization), you can get the answer that way. To get
the answer by elimination, you’ll have to know that B, C and D can
all be used for normalization of the features. D is a tricky one, since
PCA is more commonly used for dimensionality reduction, but it can
also be used for normalization.

. The variational autoencoder adapts the regular autoencoder in a
number of ways. Which is not one of them?

A It adds a sampling step in the middle.

B It makes the outputs of the encoder and decoder parameters of proba-
bility distributions.

C It adds a loss term to ensure that the latent space is laid out like a stan-
dard normal distribution.

D It adds a discriminator that learns to separate generated examples from
those in the dataset. v/

Again, a negative question. You’ll need to know all the differences
between an autoencoder and a VAE in order to get the answer, or you
need to recognize that a discriminator is component of a GAN, not a

VAE.

. We have two discrete random variables: A with outcomes 1,2, 3 and
B with outcomes a, b, c. We are given the joint probability p(A, B) in
a table, with the outcomes of A enumerated along the rows (verti-
cally), and the outcomes of B enumerated along the columns (hori-
zontally). How do we compute the probability p(A = 1| B = a)?

A We find the probability in the first column and the first row.

B We find the probability in the first column and the first row, and divide
it by the sum over the first column. v

C We find the probability in the first column and the first row, and divide
it by the sum over the first row.

D We sum the probabilities over the first column and the first row.

The answer to this question resides in a single slide (in lecture 5),
but you’ll have to have remembered the concept of conditional prob-
ability well enough to transform the information here to the correct
picture.

. Why is gradient descent difficult to apply in a reinforcement learning
setting?



A The loss surface is flat in most places, so the gradient is zero almost ev-

erywhere.

B The backpropagation algorithm doesn’t apply if the output of a model is

a probability distribution.

C There is a non-differentiable step between the model input and the
model output.

D There is a non-differentiable step between the model output and the
reward.v’

This information is again contained in a single point in the lecture
series, but it’s at the end (in the 13th lecture) and not extensively
discussed.

9. The squared error loss function looks like this: >, (y; — ti)?, where
the sum is over all instances, y; is the model output for instance i
and t; is the training label. Which is not a reason for squaring the
difference between the two?

A It ensures that negative and positive differences don’t cancel out in the

sum.
B It ensures that large errors count very heavily towards the total loss.
C When used in classification, it ensures that points near the decision
boundary weigh most heavily.v'

D It is a consequence of assuming normally distributed errors, and deriv-

ing the maximum likelihood solution.
Again, a negative question. Answers A and B were discussed in lec-

ture 1 and repeated in lecture 2. Answer D was discussed in the sec-
ond probability lecture. Answer C, however, is the opposite of what
the least squares loss does. It is true for the log loss.

3 Application questions

The final third of the exam will be application questions. These are ques-
tions that ask you to apply an algorithm, perform some computation or fol-
low some derivation. These are the questions which you’ll need to actively
practice for.

All application questions follow a predetermined pattern and are prac-
ticed in the homework exercises.

There are 10 types, with a sequence of about three questions for each
type. For each exam we will select some types, and adapt the specifics
of the question but not the structure. For instance, we may change the
dataset or change which parameter we take a derivative for.

The following is a complete list of all types. If you master all 10 types
given below, there will be no surprises on the exam.



1. Find the gradient For a simple (usually polynomial) model, work out
the derivative with respect to one of the parameters.

2. Find a ranking Given a simple dataset, and a linear classifier work out
a ranking of the instances, and identify the number of ranking errors
and the coverage.

3. Entropy For a given set of probability distributions, compute the en-
tropy and the cross-entropy.

4. Scalar backpropagation Apply the backpropagation algorithm to a
complicated scalar function. Break the function up into modules and
use the local derivatives to compute the derivative for a particular
input.

5. Decision trees Given a dataset, work out which feature makes for the
best split.

6. Evidence lower bound Work through the derivation of the evidence
lower bound (as used in the EM and VAE algorithms) and identify the
missing steps.

7. Naive Bayes Given a dataset with categorical variables, compute the
probabilities that a naive Bayes classifier assigns to each class, with
and without smoothing.

8. The kernel trick Work out the explicit feature space for a given kernel.

9. Matrix backpropagation For a given module in a matrix-based auto-
matic differentiation system, work out the Jacobian/vector products
required to implement the backward pass.

10. Lagrange multipliers Work out the optimum for a constrained opti-
mization problem, using Lagrange multipliers.

In some cases there are questions included to check that you understand
what you're doing and what it means, in addition to knowing how to do it.
These will be entirely different in the exam.

Examples of application questions

type: find the gradient

We want to train the following model:

Yyi = —vxiZ+wxi +b



with parameters v, w and b, where x; and y; are scalars. the dataset pro-
vides target values t;. We derive the gradient of the loss with respect to b
as follows:

03 i yi—t)? 10X (yi—t)
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0 (yi — ti)

10. To get from line (2) to line (3), we use the
A Chain rule v
B Product rule
C Constant factor rule
D Sum rule

11. To get from line (1) to line (2), we use the
A Chain rule
B Product rule
C Constant factor rule
D Sum rule v/
The names of the rules are given on your cheat sheet so you don’t
have to memorize them. Just make sure that you understand what is
happening in steps like these, and you can look up the answer.

12. Fill in the definition of y; and work out the derivative with respect to
b. Which is the correct result?
ALY (—xi2+wxi+b—t)
B >, (—w? —|— wxi+b—ti) v
C %lel ( vxi2 + wxy —|—b—tl)
D Y ixi(—vxi?4+wxi+b—1t;)

Note that the 3 5 in front of the loss is canceled out by the 2 factor we
received in step 4. For more practice try taking the derivative wrt to
w. You should get answer D.

type: find a ranking

We have the following training set:



X1 xo label
a 0 1 Neg
b 2 2 Neg
c 1 4 Neg
d 2 5 Neg
e 3 6 Pos
f 6 8 Pos
g 5 3 Pos
h 8 7 Pos

For the following questions, it helps to draw the data and the classification
boundary in feature space.
We use a linear classifier defined by

( ) Pos if0-x1+%x0—2>0
c(x1,x2) = .
b Neg otherwise.

Note that this classifier ignores x;, so we can make things easy for our-
selves by just looking at x5. The bigger xo, the more positive the class (care-
ful, this may be the other way around in other questions), so we can just
sort the instances by xs.

It will never be more difficult than this on the exam, but make sure
you know how you’d do this with multiple features, or with a decision tree
classifier.

13. If we turn c into a ranking classifier, how does it rank the points,
from most Negative to most Positive?

A abcdefgh
B abgcdehfs
Cabgcdhef

D acbdegfh
See lecture 3 and homework 3. For the linear classifier, we use the

distance to the decision boundary to rank the points.

14. How many ranking errors does the classifier make?
A None
B1
CcC2v
D3
This question is a very common pitfall for students. Make sure you
understand what a ranking error is. Here’s a hint: on a dataset of 5
instances, a classifier can make as many as 10 ranking errors.

15. If we draw a coverage matrix (as done in the slides), what proportion
of the cells will be red?



AiBLcCcisyrD S

In the coverage matrix, each cell is a pair of instances, consisting of
a positive and a negative pair (all pairs that might cause a ranking
error). This question asks for the proportion of ranking errors made
(see the previous question) to the total proportion of possible ranking
errors. Note that in this case we do simplify the fraction from 2/16 to
1/8.

type: Entropy

Here are two distributions, p and ¢, on the members of a set X ={a, b, c, d}.
We will use binary entropy (i.e. computed with base-2 logarithms). Note
that in the computation of the entropy 0 - log,(0) = 0, but otherwise, log, 0
is undefined as usual.

| P 9
al|% 0
b| Y Ya
c|Va Ya
|7 7
16. What are their entropies?
A H(p) =2, H(q) =
(p )—2 H(q )—15/
H(p) =1, H(q) =1
(p) =1,H(q) =15
17. What is the cross-entropy H(q,p)?
A H(q,p) =1
C H(q,p) =2v
D H(q,p) =25

These two questions are basic application of the entropy formulas
on your cheat sheet. However, to calculate this quickly, it can help
to write out the sum as logarithms, and apply what you know about
logarithms to simplify the sum, before you grab the calculator. For



instance:

1 1 1 1 1 1
“H(q) =0log0+ =~ log = + = log = + = log =
(q) Job(+40g4+4og4+20g2

2
(log 1 + log Zl)

(—log4 +log2 —log4)

DN A DN A~ DD

(—2+1-2)=—15

It’s extremely easy to make sign errors when dealing with entropy.
Computing —H makes the formula a positive sum, which makes things
a little simpler.

With a bit of practice, this sort of thing is much easier (and more ac-
curate) than punching the formula into the calculator explicitly.

18. If you try to compute H(p, q), you'll notice that something goes wrong.
What does this mean?
A As q(a) goes to zero, a’s codelength with code q goes to infinity. This
makes the expected codelength under the uniform distribution p infinite as
well.v’
B Because p is uniform, its expected codelength is always optimal under
any distribution.
C A standard (graphical) calculator does not have the precision to com-
pute the answer. In a python notebook, we would not have a problem.
D Because q(a) = 0 the expected codelength with code g, under distri-
bution q is not defined. This means that the resulting cross-entropy also
becomes undefined.
We will occasionally throw in questions like this to test your under-
standing of a formula. This is a particularly tough one: it requires
you to understand the intuitive explanation of entropy in lecture 5,
and how it leads to the formula for entropy.

Specifically, the correspondence between codelength and probability:
the lower the probability, the higher the codelength. If the proba-
bility is 0, the codelength becomes infinite. This wasn’t problem for
H(q), because 01log 0 is defined to be 0 in the context of entropy, but
for the cross-entropy, we end up with an infinity.

type: Backpropagation

NB: This question type is not just asking for a derivative (although the func-
tion may be simple enough for that). What we want is for you to apply the

10



backpropagation algorithm: that is, to work our the local derivatives symboli-
cally, and then do the rest numerically.

We will use the backpropagation algorithm to find the derivative of the
function
f(x) = sin (sin(x) cos(x))

with respect to x.
First, we break the function up into modules:

f = sin(c)
c=ab

b = cos(x)
a = sin(x)

19. What should be in the place of the dots?

A b =cos(x),c=abv

B b = cos(x), ¢ = sin(x) cos(x)
C b =cos(c),c=ab

D b = cos(c), ¢ = sin(x) cos(x)

20. For the backpropagation algorithm, we need to work out the local
derivatives symbolically. Which are the required local derivatives?
A 0f/dc, dc/da, dc/db, da/dx and db/dx v
B 0c/of, 0a/0c, 0b/0c, 0x/0a and 0x/0b
C of/dc, 0of/0a, 0f/0b and 0f/0x
D 0c/0f, 0a/0f, 0b/0f and 0x/0f

21. In terms of the local derivatives. Which is the correct expression for
the gradient 0f/0x?
A sin(c) [bcos(x) + asin(x)]
B sin(c) [b cos(x) — asin(x)]
C cos(c) [becos(x) + asin(x)]
D cos(c) [bcos(x) — asin(x)]v
The most difficult part of this question type is (usually) the applica-
tion of the multivariate chain rule (see the Deep Learning 1 lecture):
this rule tells us how the chain rule works if the variable for which
we are taking the derivative (in this case x) affects the output (f)
along multiple paths. It can help to draw a diagram of the computa-
tion graph over the modules:

11



x/a\c—>f
N,

The multivariate chain rule says that because x influences f along
two paths along the computation graph, we can take the deriva-
tives along both paths and sum them. The variables that on the other
paths are taken as constants. In this cases:

of of oc S . .
I = Bedx application of the basic chain rule
of (0cda 0cdb . ... OcC
=3¢ <aaax + abax> mv chain rule to simplify I

of oc 0a  Of Ooc 0b

= 3cdadx | 3cabox simplify

We can now work out the local derivatives for each module, fill them
in, and simplify. See homework exercise 5 for the rest of the process.

type: Decision trees

Consider the following task. The aim is to predict the class y from the bi-
nary features xi, xo, x3 and x4.

12



X1 X2 X3 X4 Y

B A A A | Yes
A A B A | No
B A A A | Yes
A A B A | No
B B A A | Yes
B B A A | Yes
B A A B | Yes
A B B B | No
A A B B | No
A B A B | Yes
B B B B | No
A B B B | No

22. In standard decision tree learning (as explained in the lectures),
without pruning. Which would be the first feature chosen for a split?
A x; Bxo Cx3v D x4

You can work this question out by computing the information gain,
but that’s slow and error-prone. It’s usually quicker to do it intu-
itively. The best split causes the most uneven distribution over the
classes Yes and No on both sides of the split. In this case, x3 causes
only Yes on the A side of the split and only No on the B side (that
is, after the split, all instances have the same class and the entropy is
zero for both).

23. If we remove that feature from the data, which would be chosen in-
stead?
A x1v B x9 C x3 D x4

Note the symmetry in the data. Splitting on x4 causes a 2/4 distribu-
tion on both sides of the split. Splitting on x» causes a 3/3 distribu-
tion and splitting on x; causes a 1/5 distribution. If you understand
entropy, you won’t need the calculator to know that x; has the high-
est information gain.

Consider the following (partial) decision tree:
X1
A / \B
X9 Yes
4 \B
Yes ?

13



We can place either x3 or x4 on the open node (indicated by the question
mark).

24. At this point, what is (approximately) the information gain for x3?
A 0B 091v C 141 D 2.75

For both leaves after splitting on x3, there is only one class left, so the
entropy is O for both. Therefore, the information grain is H(S) — 0,
where H(s) is the entropy of S = {No, No, Yes}.

Tip: check your answer against your intuitive understanding of
entropy. We know that the answer is equal to H(S), which is the op-
timum way of encoding a draw from S, or equivalently, a draw from
a distribution with (%, 3) 1 bit is the entropy for a uniform distribu-
tion, so it must be less than that. It also can’t be zero, because that
would mean we're sure of the outcome.

type: Evidence lower bound

NB: This question type involves filling in the blanks in a derivation. You are
free to just memorize the derivation, but note that half the points come from
understanding what the derivation means.

The EM and VAE algorithms are both based on the following decom-
position.

L(q,0) +KL(q,p) =EqIn M Eq lnM

q(z 1x) q(z 1x)
=E Inp(x,z[0)— nq(z|x)—Eqnp(z|x,0)+EqInq(z|x)
=EqInp(x,z|0)— np(z|x,0)
_ p(x,z]0)
=Eqln p(z]x,0)

p(z |x,0)p(x | 0)

~ R X, 0)
=E,Inp(x|8)
=Inp(x|0)

Note that while we start with L(q,0) + KL(q,p) and end with Inp(x | 6),
the actual point of this derivation is to simplify Inp(x | 0) (which we’re
actually interested in) into something computable.

25. What should be in place of (a) and (b)?

A (a):Eqlnp(z]x,0), (b):lnp(x|06)
B (a) :Eq,Inp(z|x.0), (b):EqInp(x)
C (a): Eq Inp(z,x[0), (b): lnp(x | 0)
D (a):EqInp(z,x]0), (b):Eqlnp(x)

14



26.

The

How is this derivation used in the EM algorithm?

A To maximize Inp(x | 0), we iterate between choosing 6 to maximize
L(q,0) and then choosing q to minimize KL(q,p).v’

B To maximize Inp(x | 0), we treat L(q,0) as a lower bound and optimize
its parameters by backpropagation.

C To maximize L(q,0) + KL(q, p) we rewrite it to Inp(x | ) and use ran-
dom search to find the optimal 6.

D To maximize L(q,0) + KL(q, p) we rewrite it to Inp(x | 0) and apply the
kernel trick to find the optimal 0.

VAE requires further rewriting. To simplify notation, we will omit the

parameters 0.

27.

28.

—Inpe(x) > —L(q,0) = —E4Inp(x,z) + EqInq(z|x)
=—E;Inp(x|z) —EqInp(z) + Eqlnq(z | x)
q(z [ x)

=—EqInp(x|z) +E4ln o2
p(z)

q(z | x)

— —E, Inp(x| 2) + KL (q(z | %), p(z))
=—EqInp(x|z) +KL(q(z|x),N(0,I))

=—-E;Inp(x|z) —Eq4ln

What should be in place of (a) and (b)?

A (a): InEqp(x,z) —InEqq(z|x), (b):N(0,I)

B (a):—InE.p(x,z) +InEyq(z|x), (b)

C (a): ImEgp(x|z)—InEqq(z|x), (b):N(z,var(z))
D (a):—InEqp(x|z)+InEqq(z|x), (b):N(z var(z))

Why do we use —Inp(x) instead of Inp(x)?

A To give us a reward function (where higher is better) which is the con-
vention in reinforcement learning.

B To give us a loss function (where lower is better), which is the conven-
tion in deep learning systems.v’

C To ensure that negative and positive errors don’t cancel out against one
another.

D To ensure that negative and positive errors do cancel out against one
another.

Maximizing In pg(x) is a common way of framing the maximum likelihood
objective (we want to choose the parameters that maximize the probabil-
ity (density) of the data we take the logarithm to make the analysis easier
or the search more numerically stable). Since deep learning frameworks
require a loss to minimize, we minimize — Inpg(x).

15



type: Naive Bayes

The following dataset represents a spam classification problem: we observe
8 emails and measure two binary features. The first is T if the word pill”
occurs in the e-mail (F otherwise) and the second is T if the word “meet-
ing” occurs.

“pill”  “meeting” label
F Spam
Spam
Spam
Spam
Ham
Ham
Ham
Ham

H Mmoo A
— — T T AT

We build a naive Bayes classifier on this data, as described in the lecture.
We estimate the class priors (p(Spam) and p(Ham)) from the data.

29. We observe one email that contains both words and one that contains
neither. Which class does the classifier assign to each?

A both words: Ham, neither word: Ham
B both words: Ham, neither word: Spam
C both words: Spam, neither word: Hamv’
D both words: Spam, neither word: Spam

It is extremely easy to make a mistake in these questions, and in this
case all possible answers are included. Make sure to check your work
carefully.

30. We observe an email e that contains the word “pill”, but not the word
“meeting”. What probabilities does the classifier assign?
A p(Ham |e) =9/11, p(Spam | e) = 2/11
B p(Ham |e) =2/11, p(Spam | e) =9/11vV
C p(Ham | e) =9/32, p(Spam | e) = 2/32
D p(Ham |e) =2/32, p(Spam | e) =9/32

We add pseudo-observations to the data to deal with unseen emails. The
pseudo-observations have the same weight as the normal ones. Compute
how the judgments change.

NB: We only need to add enough observations to ensure that every value
has been seen once per class per feature. So for Spam we add one observa-
tion with all F’s, one observation with all T’s and the same for Ham: four
pseudo-observations in total.

16



“pill”  “meeting” label
F Spam
Spam
Spam
Spam
Ham
Ham
Ham
Ham
Spam
Spam
Ham
Ham

I [ R NI N R I
I e N I I R A N

31. We observe one email that contains both words and one that contains
neither. Which class does the smoothed classifier assign to each?
A both words: Ham, neither word: Ham
B both words: Ham, neither word: Spam
C both words: Spam, neither word: Ham v

D both words: Spam, neither word: Spam
In a homework exercise, we would make sure that smoothing has an

effect, to illustrate its purpose. In an exam, the results are not guar-
anteed to be so intuitive. Trust your calculations.

32. We observe an email that contains the word “pill”, but not the word
“meeting”. What probabilities does the smoothed classifier assign?
A p(Ham | e) = 16/22, p(Spam | e) = 6/22
B p(Ham | e) =6/22, p(Spam | e) = 16/22V
C p(Ham |e) =16/72, p(Spam | e) = 6/72
D p(Ham |e) =6/72, p(Spam | e) = 16/72

type: the kernel trick
Consider the following kernel:

kx,y) = (2-x"y+3)?

We wouldn’t normally put constants in a kernel like this (since it doesn’t
really affect the resulting model). They’re just there so we can check that
you know how to work out the feature space.

We apply this kernel to two-dimensional vectors

=(:)v=()
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33. Which is correct?

A kixw) = (5)

49
C k(x,y) =169 v
D k(x,y) =144
The output of a kernel is always a scalar.

34. Assuming two-dimensional inputs, what is the explicit feature space
x' for which k computes the dot product?

2V2 - xq2 8 - x;2
2\/§ . X22 8 - X22
2 - xX1X2 4 - x1%2
A x' = B x' =
\/g + X1 9 - X1
V3 o xo 9 -x9
3 9
2 - Xlz 4 . X12
2 X2 4 . X22
© X1 © X1
2v3 - xo 12 - x
3 9

This question requires you to work out a three-term square (a + b +
c)?. If you can’t remember the formula, just work it out from the
two-term one:

(a+b+c)?=((a+b)+c)?
=(a+b)?+2(a+b)c+c?
= (a+b)? + 2ac + 2bc + c2
= a? +2ab + b? + 2ac + 2bc + ¢?
=a?+b%+c?+2ab+ 2ac + 2bc.

We would like a kernel for the feature space

C1 - X12
2
Coy + X2
C3 + X1X2
X = ,
Cqa - X1
Cy; - X2
Co
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where ¢y, ..., cs are constants.

35. Which kernel does the job?
A k(x,y) = (xTy)?
B k(x,y)=(x"y+1)
C k(x,y)=(xTy+1)*/
D k(x,y) = (x"y+1)3
The basic strategy here is just to work out all four feature spaces.
However, you can make an educated guess where to start. Remember
that the +1 helps us to get a constant term in the feature space and
to retain the original features (so it can’t be A). Furthermore, raising
to the power of n gives us all n-way dot products. This answer in-
cludes the 2-way dot products, but not the 3-way dot-products, so its
likely answer C.

type: Matrix backpropagation

We have a module f in an automatic differentiation (AD) system (as dis-
cussed in the lectures) which computes the following function (its forward
pass):

fio(x) = x2w

where x is a scalar and w is a vector. Note that this makes f a function
from a scalar to a vector.

We will assume that the AD engine will work out the downstream
derivatives for us. Given these, we will need to compute the derivatives
over the argument x and over the parameters w. Let the vector f represent
the output of our function.

36. What is the local scalar derivative 0fy /0x?
A Ofi/0x =2x wy v
B 0fy/0x = x wy
C 0fi/0x = 2x% Wy
D 0fy/0x = x% wy

37. Our AD engine provides a vector d such that d; = 0L/0f;. What
should the module return as the gradients of x?
A x2d
B 2xd
C 2xd"™w
D x2d™w
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Remember, we’re looking to compute 0l /0x.

oL oL f
3= % o ai; apply mv chain rule
oL . .
=> 35 20w from the previous exercise
K
K
oL
=92 —

=2x Z diwy note that the sum is a dot product, so...

= 2xd"w

38. What is the local scalar derivative 0fy /0w;?
A afk/awi = X2
B afk/awi =0
C 0fy/0ow; = x? if k = 1, 0 otherwisev’
D 0fy/0w; = 0 if k = i, x? otherwise

39. Given d with di = 0L/0d;, what should the module return as the
gradients of w?

A x%d

B 2xd

C 2xd™w

D x2d™w

Remember, we're looking to compute the vector w’ where w’; =
aavti B ; aaka a];ti apply mv chain rule

oL fi oL ,
= — = —X
afi 6wi afl

= X2di

from the previous exercise

Which means that w’ = x2d.

type: Lagrange multipliers
Consider the following optimization problem:

arg min ax + by
x,Y

such that x? + 4% =1,

where a, and b are non-zero constants.
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40.

41.

42.

43.

Which is the correct Lagrangian for this problem?
A L(x,y)=ax+by

B L(x,y) =2x+2y

C L(x,y,a) = ax + by + ox? + oy? — v/’

D L(x,y,a) =a+b+2ax+ 2y —

Which is correct?

A OL/ox =b + 2ay
B 0L/0x =b + 2?2
C 0L/0y =b+2ayv
D 0L/0y =b + 2ay?

Let n = v/a? + b2 What are (all) the solutions?

A x=a/n,y=-b/n

B x=a/n,y=—-b/nand x =—a/n,y =b/n

C x=+a/n,y=vb/nand x =a/n,y =b/n

D x=a/n,y=b/nand x = —a/n,y = —-b/nv

Note that this is a different way of proving what we learned in lec-
ture 2: the unit vector (x,y) that maximizes the dot product with
vector (a, b) is the one that points in the same direction (that is, the
solution is (a, b) normalized to a unit vector).

The second solution is the unit vector that points in the opposite
direction; the one that minimizes the dot product (remember, we
find all optima, not just the maxima).

If you want extra practice, try the same thing in three dimen-
sions and then in n dimensions.

Could we also find these solutions by using standard gradient de-
scent with the gradient of the Lagrangian?

A Yes, this is how SVMs with kernels are commonly solved.

B Yes, this is how SVMs are commonly solved, but in that case the kernel
trick cannot be applied.

C No, the solutions are saddle-points, not optima. v/

D No, the gradient is not zero at the solutions.
NB: There are some ways to apply gradient descent if the roots of the

derivative of L can’t be found analytically, but standard gradient de-
scent won’t work.
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