Practice Exam Machine Learning 2018

February 22, 2018

- 1. Which answer contains only unsupervised methods and tasks?
 - **A** k-Means, Clustering, Density estimation √
 - B Clustering, Linear regression, Generative modelling
 - C Classification, Clustering, k-Means
 - **D** k-NN, Density estimation, Clustering
- 2. In the book, Flach makes a distinction between *grouping* and *grading* models. Which statement is **false**?
 - A Grouping models segment the feature space.
 - **B** Grading models combine other classifiers, assigning a grade to each. ✓
 - **C** Grading models can assign each element in the feature space a different prediction.
 - **D** Grouping models can only assign a finite number of predictions.
- 3. We plot the ROC curve for a ranking classifier. What does the area under the curve estimate?
 - **A** The probability of a ranking error √
 - **B** The accuracy
 - **C** The sum of squared errors
 - **D** The probability of a misclassification
- 4. You want to search for a model in a discrete model space. Which search method is the **least** applicable?
 - A Random search
 - **B** Simulated annealing
 - **C** Evolutionary methods
 - **D** Gradient descent √
- 5. In bar charts, what do error bars represent?

- **A** Standard deviation
- **B** Standard error
- **C** A confidence interval
- **D** All are possible ✓
- 6. We can decompose the sample covariance matrix \mathbf{S} into a transformation matrix as follows $\mathbf{S} = \mathbf{A}\mathbf{A}^\mathsf{T}$. This allows us to transform normally distributed data into *standard* normally distributed data. However, the Principal Component Analysis doesn't use this decomposition, but the Singular Value Decomposition ($\mathbf{S} = \mathbf{U}\mathbf{Z}\mathbf{U}^\mathsf{T}$). Why?
 - A It's easier to compute.
 - **B** There isn't always an **A** such that $S = AA^T$.
 - **C** It makes the loss surface more smooth.
 - **D** It ensures the first axis has the highest eigenvalue. \checkmark
- 7. What is the relation between an ROC curve and a coverage matrix?
 - A Normalizing the axes of the coverage matrix gives an ROC curve.√
 - **B** Normalizing the axes of the ROC curve matrix gives a coverage matrix.
 - **C** Dividing the values in the coverage matrix by the ranking error gives the coverage matrix.
 - **D** The ROC curve is the transpose of the coverage matrix.
- 8. Which statement is **true**?
 - A The average error of many models with high bias is low.
 - **B** The average error of many models with high variance is low. \checkmark
 - C A model with high bias has low variance
 - **D** High bias is an indication of overfitting

Here we see the derivation of the gradient of the squared-error loss for linear regression. Which rules are applied in the indicated steps, to get from the line above it to the labeled line?

$$\frac{\partial \frac{1}{2} \sum_{i} (f(x_{i}) - y_{i})^{2}}{\partial w} = \frac{1}{2} \frac{\partial \sum_{i} (x_{i}w + b - y_{i})^{2}}{\partial w}$$

$$= \frac{1}{2} \sum_{i} \frac{\partial (x_{i}w + b - y_{i})^{2}}{\partial w}$$

$$= \frac{1}{2} \sum_{i} \frac{\partial (x_{i}w + b - y_{i})^{2}}{\partial (x_{i}w + b - y_{i})} \frac{\partial (x_{i}w + b - y_{i})}{\partial w}$$

$$= \sum_{i} (x_{i}w + b - y_{i}) \frac{\partial (x_{i}w + b - y_{i})}{\partial w}$$

$$= \sum_{i} (x_{i}w + b - y_{i}) x_{i}$$

$$(3)$$

- 9. In line 1, we use the
 - A Product rule B Chain rule C Sum rule ✓ D Exponent rule
- 10. In line 2, we use the
 - A Product rule B Chain rule ✓ C Sum rule D Exponent rule
- 11. In line 3, the correct result is

 - **A** $\sum_{i} (x_{i}^{2}w + b y_{i})$ **B** $\sum_{i} x_{i} (x_{i}w + b y_{i}) \checkmark$ **C** $\sum_{i} (x_{i}w + b y_{i})$ **D** $\sum_{i} (x_{i}w + b y_{i})^{2}$

We have the following training set:

	χ_1	x_2	label
a	1	0	Ham
Ъ	3	0	Ham
c	5	1	Spam
d	7	1	Spam
e	0	2	Ham
f	2	2	Spam
g	4	3	Spam
h	6	3	Ham
i	8	4	Spam

We use a linear classifier defined by

$$c(x_1,x_2) = \begin{cases} \text{Spam} & \text{if } x_1 + 0 \cdot x_2 - 2 > 0 \\ \text{Ham} & \text{otherwise.} \end{cases}$$

To answer the following questions, first draw the feature space, the classification boundary, and the coverage matrix.

12. If we turn c into a ranking classifier, how does it rank the points, from most "Ham" to most "Spam"?

A eafbgchdi 🗸

Bigehfcab

C dhbfigcea

D eaihgfdcb

13. How many ranking errors does the classifier make?

A 2 **B** 4√ **C** 6 **D** 8

14. What proportion of the coverage matrix is red? A $\frac{8}{20}$ B $\frac{3}{10}$ C $\frac{1}{5}$ \checkmark D $\frac{1}{18}$